An Irregular-Octagonal-Prism-shaped Host-Guest Supramolecular

Network based on Silicotungstate and Manganese-Complexe for

Light-Driven Hydrogen Evolution

Ruoru Yang^{a§}, Bonan Li^{a§}, Xiaoyong Lai^b, Xiaojing Yu^a, Boxin Xiao^a, Sumin Hu^a,

Haijun Pang^{a*}, Huiyuan Ma^{a*}, Xinming Wang^a and Lichao Tan^a

^aCollege of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China ^bState Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering

*E-mail: panghj116@163.com, Tel./fax.: 86-0451-86688575.

*E-mail: mahy017@163.com, Tel./fax: 86-0451-86392716.

Table of contents

Section 1 Experimental Section

I:Materials and General Method	page S3
II: X-ray Crystallographic Study	page S3
III: Table S1 (Crystal data and structure refinement for compound 1)	page S4
<i>IV: Experimental process on photocatalytic hydrogen evolution</i>	page S5
Section 2 Supplementary structural figures and characterization inf	formation
I: Fig. S1-S9	page S6-S8
II: Table S2 and S3	page S8

Section 1 Experimental Section

I:Materials and General Methods

All reagents were purchased commercially and were used without further purification. The FT-IR spectrum was recorded from KBr pellets in the range of 4000–400 cm⁻¹ with a Bruker OPTIK GmbH-Tensor II spectrometer. The powder Xray diffraction (PXRD) data was collected on a Bruker OPTIK GmbH-Tensor II spectrometer at room temperature. Optical properties were also studied by diffuse reflectance UV-vis spectroscopy (Lambda 35 spectrometer), Photoluminescence spectrum (PL) (SPEX Fluorolog-3 spectrofluorometer). The X-ray photoelectron spectroscopy (XPS) measurements were implemented by a Thermo ESCALAB 250Xi spectrometer with monochromatic Al K α radiation (h γ = 1486.6 eV). All XPS spectra were characterized with respect to the C 1s peak at 284.8 eV.

The electrochemical impedance spectra (EIS), Mott-schottky plot and photocurrent-time (I-T) profiles was recorded on the CHI660E electrochemical workstation with a standard three-electrode system with the photocatalyst-coated ITO as the working electrode, Pt plate as the counter electrode, and Ag/AgCl electrode as a reference electrode. A 500 W Xenon lamp was used as the light source during the measurement. A 0.25 M Na₂SO₄ solution was used as the electrolyte.

II: X-ray Crystallographic Study

Single crystal X-ray diffraction data collections of compound 1 was performed using a Bruker Smart Apex CCD diffractometer with Mo-Ka radiation ($\lambda = 0.71073$ Å) at 293 K. Multi-scan absorption corrections were applied. The structure was solved by Direct Methods and refined by full-matrix least-squares on F_2 using the SHELXTL 2014 crystallographic software package. Anisotropic displacement parameters were used to refine all non-hydrogen atoms. The organic hydrogen atoms were generated geometrically. All H atoms on C atoms were fixed at the calculated positions.

III: Table S1 (Crystal data and structure refinement for compound 1)

Compound	1
Formula	$C_{36}H_{38}Mn_2N_{30}O_{44}SiW_{12}\\$
Formula weight	3938.95
Crystal system	Monoclinic
Space group	C2/c
a/Å	22.256(5)
$b/{ m \AA}$	20.132(5)
c/Å	17.579(5)
$\alpha/^{\circ}$	90
$eta/^{\circ}$	107.03(5)
γ/°	90
V/\AA^3	7531(3)
Ζ	4
$D_{\text{calcd}}/\text{g cm}^{-3}$	3.474
T/K	293(2)
μ/mm^{-1}	18.696
Refl. Measured	25384
Refl. Unique	8391
$R_{\rm int}$	0.0714
<i>F</i> (000)	7072
GoF on F^2	1.100
$R_1/wR_2 [I \ge 2\sigma(I)]$	0.0553/0.1074
$\overline{R_{I} = \sum \left\ F_{o} \right\ - \left\ F_{c} \right\ / \sum \left\ F_{o} \right\ }$	$vR_2 = \sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{1/2}$

Table S1 Crystal data and structure refinements for title compounds.

IV: Experimental process on photocatalytic hydrogen evolution

All photocatalytic experiments were conducted in a 27 mL Pyrex reaction vessel via a photocatalytic H₂ evolution activity evaluation system, where the photoreaction temperature was kept at a constant temperature (4 °C) with circulating water through a thermostat. The gas circulation was swept by high purity N₂ before illumination. For each experiment, the 5 mg photocatalyst was dispersed in 20 mL of 10 vol % triethylamine (TEA) and 50 vol% acetone aqueous solution under a 500 W Xe lamp (without cut-off filter). Place the reactor on a stirrer and continue to stir and irradiate for 3h, enabling the photocatalyst to maintain a uniform dispersion state and uniform illumination during the experimental process. The amount of hydrogen evolved was determined at an interval of 1 h with gas chromatography.

Section 2 Supplementary structural figures and characterization

information

Fig. S1 View of the basic crystallographic unit in compound 1 (All H atoms and lattice water molecules are omitted for clarity).

Fig. S2 Detailed view of an irregular-octagonal-prism-shaped of host-guest supramolecular network

Fig. S3 Ball and stick views of the coordination environments of (a) SiW_{12} cluster; (b) {Mn(L)₃}

fragment in compound 1.

Fig. S4 The IR spectra of compound 1 and SiW_{12}

Fig. S5 Stimulative (black) and experimental (red) PXRD patterns of compound 1

Fig. S6. EIS Nyquist plots of compound 1 and SiW_{12}

Fig. S7. The proposed mechanism of the photocatalytic reaction.

Location of absorption peaks	Characteristic absorption peaks
1090	Si-O _c
957	W=O _t
916	W-O _b -W
782	W-O _c -W
1384	C-N stretch
1489	C-N stretch
1629	C=N stretch

 Table S2. IR peak assignments of the compound 1

Table. S3 Bond-valence Sums for the Mn and W Atoms of compound 1

Atom	BVS	Oxidation State
Mn(1)	1.8481	+II
W(1)	6.4412	+VI
W(2)	6.4674	+VI
W(3)	6.4969	+VI
W(4)	6.4944	+VI
W(5)	6.4903	+VI
W(6)	6.4982	+VI
W(7)	6.2490	+VI