Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

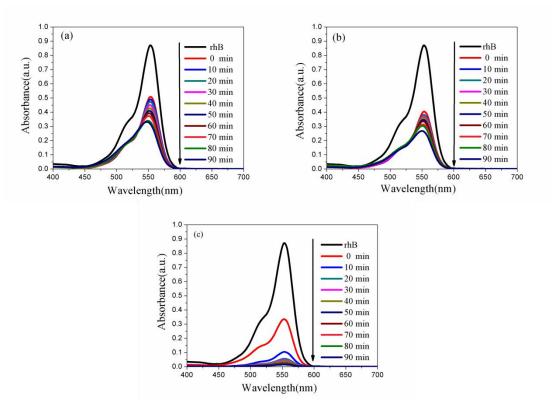
Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Visible light driven high-efficient photocatalytic property of Cu2ZnSnS4 nanoparticles

synthesized by hydrothermal method

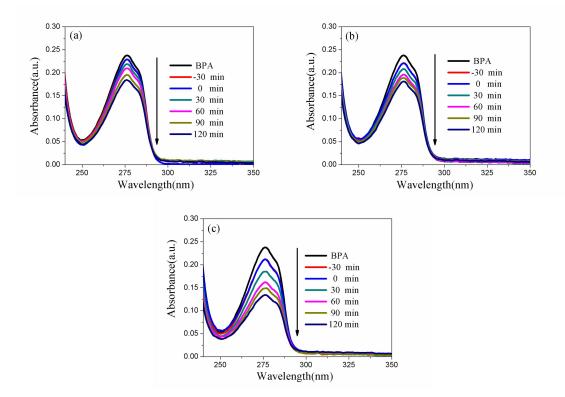

Zhangchen Hou, Yufang Li*, Jinsong Liu, Honglie Shen, Xiaomin Huo

College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and

Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing,

210016, PR China

* Corresponding author: lyf_msc@nuaa.edu.cn (Y.F. Li)


Fig.S1. Time-dependent UV-Vis absorption spectra of RhB solution under stimulated Vis irradiation of CZTS samples prepared at (a) 160°C, (b) 180°C and (c) 200°C.

Sample	First order kinetics equation	Coefficient constant (R ²)
rhB	y=0.000454t - 0.000323	0.93751
160°C-CZTS	y=0.00527t+0.51297	0.97999
180°C-CZTS	y=0.00411t + 0.74867	0.91187
200°C-CZTS	y=0.02905t + 1.77020	0.82890

Table S1. Pseudo first-order kinetics equation and coefficient constant of the catalytic

photodecon	position of RhB	pollutants.
------------	-----------------	-------------

A 10mg/L BPA solution was prepared. For each photocatalysis experiment, 100 mL of BPA solution was measured, and then a 50 mg CZTS sample was added and stirred in a dark environment for 60 minutes. After starting the light, 6 mL of the solution was taken in the centrifuge tube every 30 minutes, and the light stopped after 120 minutes. Finally, the removed solution was centrifuged in an extractor at 10000rad/min for 3 minutes, and the supernatant was taken for UV-vis spectrum analysis. The results were shown in Fig. S2, Fig. S3 and table S2.

Fig.S2. Time-dependent UV-Vis absorption spectra of BPA solution under stimulated Vis irradiation of CZTS samples prepared at (a) 160°C, (b) 180°C and (c) 200°C.

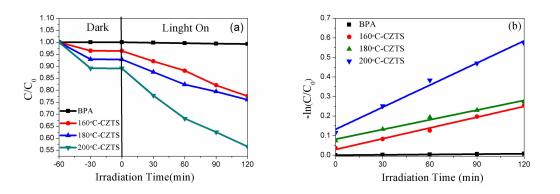


Fig.S3. Photocatalytic degradation rate of BPA by CZTS samples at different temperatures.

Sample	First order kinetics equation	Coefficient constant (R ²)
BPA	y=0.000031t - 0.000003	0.99789
160°C-CZTS	y=0.00184t + 0.02915	0.98869
180°C-CZTS	y=0.00166t + 0.08160	0.98595
200°C-CZTS	y=0.00377t + 0.13201	0.98860

Table S2. Pseudo first-order kinetics equation and coefficient constant of the catalytic

photodecomposition of BPA.

	1 1		e	
Sample	TOC (mg/L)	IC(mg/L)	TC(mg/L)	Mineralization degree (%)
Before	11.365	0.4100	11.775	
Photocatalysis				61.37
After	4.390	0.4902	4.880	
Photocatalysis				

Table S3. The TOC removal efficiency (Mineralization degree) of RhB in aqueous solution for theCZTS prepared at 200°C after visible light irradiation for 90 min.

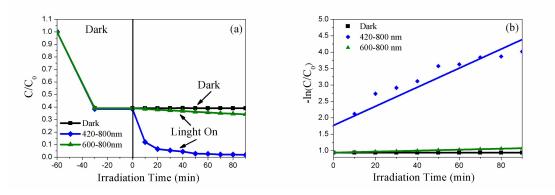


Fig.S4. Photocatalytic degradation rate of RhB by CZTS prepared at 200°C under different

wavelengths of light irradiation.

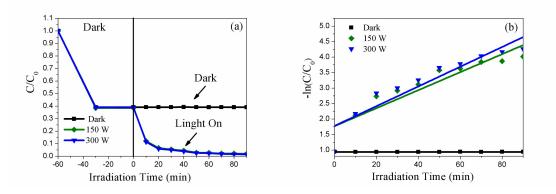


Fig.S5. Photocatalytic degradation rate of RhB by CZTS prepared at 200°C under different

powers of light irradiation.

Power	First order kinetics equation	Coefficient constant (R ²)
150W	y=0.02905t + 1.77020	0.82890
300W	y=0.03185t + 1.77758	0.85349

Table S4. Pseudo first-order kinetics equation and coefficient constant of the catalytic

photodecomposition	of RhB under	different irradiat	ion powers.
photodecomposition		different infadia	ion powers.

Catalyst	m _{Catalyst}	RhB	Solution	Time	Degradation	Degradation	Ref
	(mg)	(mg/L)	(mL)	(min)	efficiency	rate	
					(%)	(min ⁻¹)	
TiO ₂ -CZTS	0.1	7.2	50	80	100	1×10-2	[1]
TiO ₂ -CZTS	40	20	40	60	94.1	5.551×10 ⁻²	[2]
CZTS	40	4	100	100	83	1.72×10 ⁻²	[3]
CZTS	10	10	20	100	99.8	4.97×10 ⁻²	[4]
CZTS (thin film)	-	-	150	240	79	0.39 (h ⁻¹)	[5]
CZTS+TA	20	~24	50	240	51.66	0.11099 (h ⁻¹)	[6]
CZTS	10	10	50	360	98	4×10 ⁻²	[7]
CZTS/La2Ti2O7	50	~8	100	60	95	-	[8]
CZTS	30	10	100	90	98,2	2.905×10-2	This
							work

Table S5. Data comparison of RhB photocatalysis with different catalysts.

References

 M. A. Basit, F. Raza, Sumayya, G. Karima, I. Ali and S. Butt, Journal of Materials Science: Materials in Electronics, 2020, 31, 17563-17573.

[2] A. Raza, H. Shen, A. A. Haidry, M. K. Shahzad, R. Liu and S. Cui, Appl. Surf. Sci., 2020, 505.

[3] M. Burhanuz Zaman, R. A. Mir and R. Poolla, International Journal of Hydrogen Energy, 2019, 44, 23023-23033.

[4] Q.-B. Wei, P. Xu, X.-P. Ren and F. Fu, J. Alloy. Compd., 2019, 770, 424-432.

[5] M. Sampath, K. Sankarasubramanian, J. Archana, Y. Hayakawa, K. Ramamurthi and K. Sethuraman, Materials Science in Semiconductor Processing, 2018, 87, 54-64.

[6] Y. Guo, J. Wei, Y. Liu, T. Yang and Z. Xu, Nanoscale Research Letters, 2017, 12.

- [7] S. S. Shinde, Journal of Semiconductors, 2015, 36.
- [8] X. Tian, J. Liu, H. Wang and H. Yan, Crystengcomm, 2014, 16, 8517-8522.