Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Large Scale-up Monocrystalized 3R MoS₂ Electrocatalyst for Efficient Nitrogen Reduction Reaction

Bin Fang,^{a,#} Junjie Yao,^{b,#} Xiaojun Zhang,^c Liang Ma,^c Yaqi Ye,^b Jiayi Tang,^b Guifu Zou,^b Junchang Zhang,^{d,*} Lin Jiang^{a,*}, Yinghui Sun^{b,*}

^a Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

^b College of Energy, Soochow Institute for Energy and Materials Innovations and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China

^c College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China

^d School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China

*Corresponding author.

E-mail address: <u>zhangjunchang12@sina.com</u> (J. C. Zhang); <u>ljiang@suda.edu.cn</u> (L. Jiang); <u>yinghuisun@suda.edu.cn</u> (Y. H. Sun)

Fig. S1. (a) UV-Vis absorption spectra of various NH_4^+ concentrations after incubated for 2h at room temperature. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S2. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S3. Image of the large-scale preparation of the 3R MoS₂ in laboratory.

Fig. S4. SEM images of (a, b) MoS₂-600, (c, d) MoS₂-650 and (e, f) MoS₂-700.

Fig. S5. UV-Vis absorption spectra of the electrolytes stained with an indophenol indicator after NRR electrolysis of MoS_2 -700/CP.

Catalyst	Electrolyte	NH ₃ Yield	Faradic	Reference
		Rate	Efficiency	
3R MoS ₂	0.1 M Na ₂ SO ₄	$8.8 \ \mu g \ h^{-1} \ mg^{-1}{}_{cat}$	1.9 %	This work
Mo ₂ C/C ^a	0.5 M Li ₂ SO ₄	11.3 $\mu g h^{-1} m g^{-1}{}_{cat}$	7.8 %	[1]
MoS ₂ /CC ^b	0.1 M Na ₂ SO ₄	$4.94{\times}10^{-3}\mu g\ h^{-1}\ cm^{-2}$	1.17 %	[2]
Ru/2H-MoS ₂ ^c	10 mM HCl	$6.97 \times 10^{-3} \mu g h^{-1} cm^{-2}$	17.6 %	[3]
Fe ₃ Mo ₃ C/C ^d	0.1 M KOH	$13.55 \ \mu g \ h^{-1} \ cm^{-2}$	14.74 %	[4]
AuNPs@MoS2 ^e	0.1 M Na ₂ SO ₄	$25 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat}$	9.7 %	[5]
$1T-MoS_2@Ti_3C_2{}^{f}$	0.1 M HCl	$30.33 \ \mu g \ h^{-1} \ mg^{-1}{}_{cat}$	10.94 %	[6]

Table S1. Comparison of the NRR electrocatalytic activity of 3R MoS2 and other Mo-

based catalysts at ambient condition.

^aMoS₂ embedded in carbon nanosheets. ^bMoS₂ array grown on carbon cloth. ^cnoble metal Rudecorated 2H-MoS₂. ^dFe₃Mo₃C and C composite. ^e1T-MoS₂ assembled on Ti_3C_2 MXene. ^fnoble metal Au grown on MoS₂ nanosheets. 3R MoS₂ in this work is bare without any substrate.

Fig. S6. SEM images (a, b) and XRD pattern (c) of MoS_2 -700 after 10 h NRR electrolysis. Corresponding chronoamperometry curve tested at -1.0 V *vs*. RHE for 10 h (d).

Fig. S7. UV–Vis spectra of the electrolyte estimated by the method of Watt and Chrisp after 2 h electrolysis for the NRR at different potentials under ambient conditions (a), and corresponding calculated N_2H_4 concentration (b).

Fig. S8. ¹⁵N isotope labelled experiment. ¹H NMR spectra of $(^{14}NH_4)_2SO_4$, $(^{15}NH_4)_2SO_4$ and the electrolyte fed by $^{14}N_2$ and $^{15}N_2$ after the electrolytic reaction.

Fig. S9. Calculated NH_3 yield rate and Faradaic efficiency of 3R MoS₂-600/CP for the NRR at different potentials.

Fig. S10. Calculated NH_3 yield rate and Faradaic efficiency of 3R MoS₂-650/CP for the NRR at different potentials.

Fig. S11. CV curves of MoS_2 -600 (a), MoS_2 -650 (b) and MoS_2 -700 (c) at 80-280 mV s⁻¹ in the range of -0.05 and 0.15 V *vs*. RHE. Corresponding capacitive current densities at 0.1 V *vs*. RHE for MoS_2 -600 (b), MoS_2 -650 (d) and MoS_2 -700 (f).

Fig. S12. Electrochemical impedance spectra of MoS_2 -600/CP, MoS_2 -650/CP and MoS_2 -700/CP electrode measured at -1.0 V *vs.* RHE in Ar-saturated 0.1 M Na₂SO₄ electrolyte.

Fig. S13. Comparison diagram of calculated NH_3 yield rate and FE of MoS_2 -600/CP, MoS_2 -650/CP, MoS_2 -700/CP, MoS_2 -750/CP and MoS_2 -800/CP for the NRR at -1.0 V *vs.* RHE.

Fig. S14. CV curves of MoS₂-750 (a) and MoS₂-800 (c) at 80-280 mV s⁻¹ in the range of -0.05 and 0.15 V *vs*. RHE. Corresponding capacitive current densities at 0.1 V *vs*. RHE for MoS₂-750 (b) and MoS₂-800 (d).

Fig. S15. Capacitive current densities at 0.1 V *vs*. RHE as a function of scan rates for MoS₂-600, MoS₂-650, MoS₂-700, MoS₂-750 and MoS₂-800.

References

- [1] H. Cheng, L. Ding, G. Chen, L. Zhang, J. Xue, H. Wang, Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions, *Adv. Mater.* 30 (2018) 1803694.
- [2] L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A.M. Asiri, L. Chen, B. Tang, X. Sun, Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS₂ catalyst: theoretical and experimental studies, *Adv. Mater.*, 30 (2018).
- [3] B. H. R. Surrnto, D. Wang, L. M. Azofra, M. Harb, L. Cavallo, R. Jalili, D. R. G. Mitchell, M. Chatti and D. R. MacFarlane, MoS₂ Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia, *ACS Energy Lett.*, 2019, 4, 430-435.
- [4] H. Cheng, P. Cui, F. Wang, L.-X. Ding, H. Wang, High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium, *Angew. Chem. Int. Ed.* 58 (2019) 15541–15547.
- [5] Y. Zhou, X. Yu, X. Wang, C. Chen, S. Wang and J. Zhang, MoS2 nanosheets supported gold nanoparticles for electrochemical nitrogen fixation at various pH value, *Electrochim. Acta*, 2019, 317, 34-41.
- [6] X. Xu, B. Sun, Z. Liang, H. Cui and J. Tian, High-Performance Electrocatalytic Conversion of N₂ to NH₃ Using 1T-MoS₂ Anchored on Ti₃C₂ MXene under Ambient Conditions, ACS Appl. Mater. Interfaces, 2020, 12, 26060-26067.