Synthesis of Schiff-base porphyrin derivatives and their self-assemblies to enhance photocatalytic performance

Jinghe Pei,a Bo Gao,*a,b Yanhui Lia and Qian Duan**a

a. School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China. Tel: +86-431-85583015, Fax: +86-431-85583015. E-mail: gaobo@ciac.ac.cn; duanqian88@hotmail.com.

EXPERIMENT

Synthesis of TAPP 500 mg TNPP, 2.6 g Na₂S and 160 mg NH₄Cl were dissolved in 50 mL DMF and reacted at 70 °C for 8 h. After cooling, they were filtered, washed with deionized water, and dried in vacuum. Purified by column chromatography, the purple powder solid TAPP was obtained. (Fig S1)

¹H NMR (CDCl₃, 25 °C, 500 MHz), δ ppm: 8.90 (s, 8H, C-H, pyrrole), 7.99 (d, 8H, Ar-H), 7.08 (d, 8H, Ar-H), 5.29 (s, 8H, ph-NH₂), -2.72 (s, 2H, -NH-pyrrole). (Fig S2)

Synthesis of porphyrin derivative TCyPPP, TbePPP and TPyPPP 0.5 g (0.7 mmol) TAPP, 60 mL ethanol and 3.5 mmol aldehyde were stirred and dissolved. Add a little glacial acetic acid as a catalyst. Reflux at 90 °C for 8 h. Leave to rest until the reaction is over. It is then filtered and washed with anhydrous ethanol until the filtrate is colorless and vacuum dried.

5,10,15,20-tetra[p-(4-cyanophenylmethylene imino)] phenyl porphyrin (TCyPPP)

According to the above method, 0.5 g (0.7 mmol) TAPP and 0.46 g (3.5 mmol) p-cyanobenzaldehyde were taken to prepare compound TCyPPP. (Fig S1)

¹H NMR (CDCl₃, 25 °C, 500 MHz), δ ppm: 10.06 (s, 8H, C-H, pyrrole), 8.94 (s, 4H, -N=CH-), 8.27-8.25 (d, J=8.0 Hz, 8H, Ar-H), 7.94-7.96 (d, J=8.0 Hz, 8H, Ar-H), 7.62-7.64 (d, J=8.0 Hz, 8H, Ar-H), 7.08-7.10 (d, J=8.0 Hz, 8H, Ar-H), -2.74 (s, 2H, -NH-pyrrole). (Fig S3)

5,10,15,20-tetra[p-(P-benzylidene imino)] phenyl porphyrin (TbePPP)

According to the above methods, 0.5g (0.7 mmol) TAPP and 360 μl (3.5 mmol)
benzaldehyde were used to prepare compound TbePPP. (Fig S1)

\(^1\)H NMR (CDCl\(_3\), 25 °C, 500 MHz), \(\delta\) ppm: 10.03 (s, 8H, C-H, pyrrole), 8.95 (s, 4H, -N=CH-), 8.81-8.79 (d, J=8.0 Hz, 8H, Ar-H), 8.24-8.22 (d, J=8.0 Hz, 8H, Ar-H), 8.07-8.05 (d, J=8.0 Hz, 8H, Ar-H), 7.56-7.54 (d, J=8.0 Hz, 8H, Ar-H), 7.03 (s, 8H, Ar-H), -2.70 (s, 2H, -NH- pyrrole). (Fig S4)

5,10,15,20-tetra [p-(4-pyridydimethylene imino)] phenyl porphyrin (TPyPPP)

According to the above method, 0.5 g (0.7 mmol) TAPP and 336 \(\mu\)L 4-pyridyl formaldehyde (3.5 mmol) were used to prepare compound TPyPPP. (Fig S1)

\(^1\)H NMR (CDCl\(_3\), 25 °C, 500 MHz), \(\delta\) ppm: 10.05 (s, 8H, C-H, pyrrole), 8.81 (s, 4H, -N=CH-), 8.27-8.25 (d, J=8.0 Hz, 8H, Ar-H), 8.76-7.74 (d, J=8.0 Hz, 8H, Ar-H), 7.61-7.59 (d, J=8.0 Hz, 8H, Ar-H), 7.05-7.03 (d, J=8.0 Hz, 8H, Ar-H), -2.71 (s, 2H, -NH- pyrrole). (Fig S5)

![Synthetic routes of TAPP, TCyPPP, TbePPP and TPyPPP.](image)
Fig S2 1H NMR spectrum of TAPP.

Fig S3 1H NMR spectrum of TCyPPP.
Fig S4 1H NMR spectrum of TbePPP.

Fig S5 1H NMR spectrum of TPyPPP.