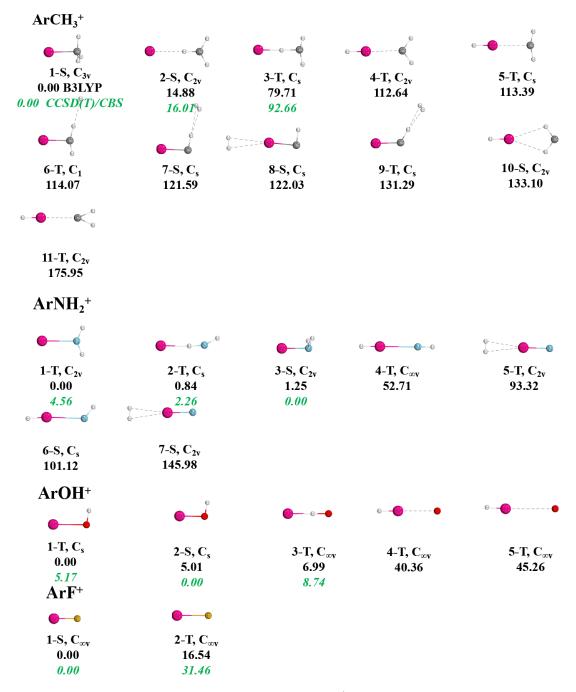
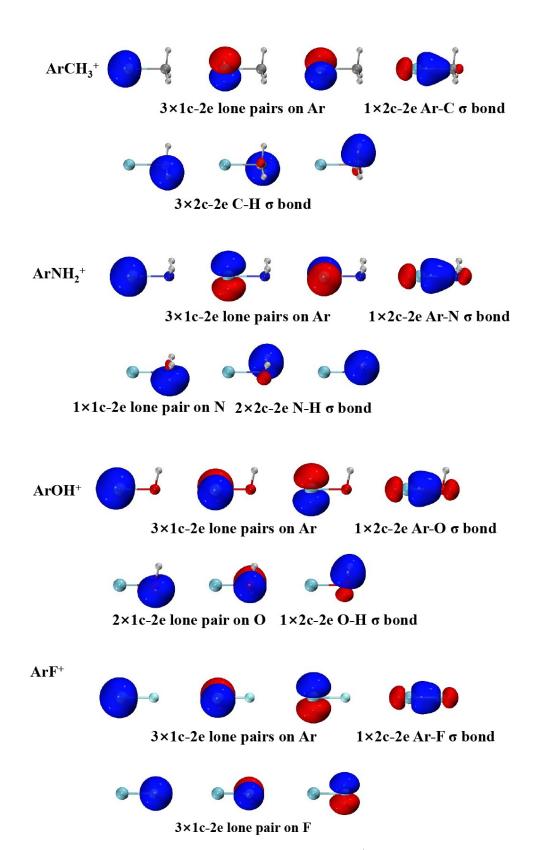
Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry


Dative versus electron-sharing bonding in the isoelectronic argon compounds ArR^+ (R = CH₃, NH₂, OH, F)

Zhiling Liu*, Jing He, Ya Li, Yan Bai, Qingyang Lin, Yurong Guo§, Fuqiang Zhang, Haishun Wu, and Jianfeng Jia


School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, Shanxi Normal University, Linfen, Shanxi 041004, People's Republic of China

E-mail address: lzling@sxnu.edu.cn

§Current address: Department of Chemistry, School of Science, Tianjin University, People's Republic of China.

Figure S1. Optimized low-lying geometries of ArR⁺ cations (R = CH₃, NH₂, OH, F) at the B3LYP-D3(BJ)/aug-cc-pVTZ level. The symmetries and relative energies (in kcal·mol⁻¹) relative to the ground-state anion are indicated. The numbers in *italic* are the relative energies calculated at CCSD(T)/CBS//B3LYP-D3(BJ)/aug-cc-pVTZ level. The letters **S** and **T** behind the serial number stand for the singlet and triplet electronic states, respectively.

Figure S2. The NLMO analysis for the lowest singlet ArR^+ cations ($R = CH_3$, NH_2 , OH, F) at the B3LYP-D3(BJ)/aug-cc-pVTZ level. (isosurface = 0.08 a.u.)

The cartesian coordinates of the lowest singlet ArR^+ (R = F, OH, NH_2 , CH_3) complexes at the B3LYP-D3(BJ)/aug-cc-pVTZ level of theory.

ArC]	H_3^+		
Ar	0.000000000000	0.000000000000	0.702254000000
C	0.000000000000	0.000000000000	-1.354393000000
Н	0.000000000000	1.072941000000	-1.504737000000
Н	0.929194000000	-0.536471000000	-1.504737000000
Н	-0.929194000000	-0.536471000000	-1.504737000000
ArN.	${ m H_2}^+$		
Ar	-0.044788000000	-0.646804000000	0.0000000000000
N	-0.044788000000	1.264386000000	0.000000000000
Н	0.559849000000	1.395884000000	0.829016000000
Н	0.559849000000	1.395884000000	-0.829016000000
ArO	H^+		
Ar	0.036063000000	-0.589928000000	0.0000000000000
O	0.036063000000	1.158332000000	0.0000000000000
Н	-0.937647000000	1.352049000000	0.000000000000
ArF ⁺	-		
Ar	0.000000000000	0.000000000000	0.544661000000
F	0.000000000000	0.000000000000	-1.089322000000