New Journal of Chemistry

Dative versus electron-sharing bonding in the isoelectronic argon compounds $\mathrm{ArR}^{+}\left(\mathrm{R}=\mathbf{C H}_{3}, \mathbf{N H}_{2}, \mathbf{O H}, \mathrm{~F}\right)$
Zhiling Liu*, Jing He, Ya Li, Yan Bai, Qingyang Lin, Yurong Guo ${ }^{\S}$, Fuqiang Zhang, Haishun Wu, and Jianfeng Jia

[^0]
11-T, $\mathrm{C}_{2 \mathrm{v}}$
175.95
$\mathbf{A r N H}_{2}{ }^{+}$

6-S, C
101.12
1-T, C 0.00
5.17
$\mathbf{A r F}^{+}$
1-S, C 0.00 0.00

2-T, C_{s} 0.84
2.26

7-S, $\mathrm{C}_{2 \mathrm{v}}$
145.98

ArOH^{+}

 .2-S, C 5.01 0.00

2-T, C_{ov}
16.54
31.46

3-T, $\mathrm{C}_{\text {cov }}$
6.99
8.74

Figure S1. Optimized low-lying geometries of ArR^{+}cations $\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{NH}_{2}, \mathrm{OH}, \mathrm{F}\right)$ at the B3LYP-D3(BJ)/aug-cc-pVTZ level. The symmetries and relative energies (in $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$) relative to the ground-state anion are indicated. The numbers in italic are the relative energies calculated at $\operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS} / / \mathrm{B} 3 \mathrm{LYP}-\mathrm{D} 3(\mathrm{BJ}) /$ aug-cc-pVTZ level. The letters \mathbf{S} and \mathbf{T} behind the serial number stand for the singlet and triplet electronic states, respectively.

$1 \times 1 \mathrm{c}-2 \mathrm{e}$ lone pair on $\mathrm{N} 2 \times 2 \mathrm{c}-2 \mathrm{e} \mathrm{N}-\mathrm{H} \sigma$ bond

Figure S2. The NLMO analysis for the lowest singlet ArR^{+}cations ($\mathrm{R}=\mathrm{CH}_{3}, \mathrm{NH}_{2}, \mathrm{OH}$, F) at the B3LYP-D3(BJ)/aug-cc-pVTZ level. (isosurface $=0.08$ a.u.)

The cartesian coordinates of the lowest singlet $\mathrm{ArR}^{+}\left(\mathrm{R}=\mathrm{F}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{CH}_{3}\right)$ complexes at the B3LYP-D3(BJ)/aug-cc-pVTZ level of theory.

$\mathrm{ArCH}_{3}{ }^{+}$

Ar	0.000000000000	0.000000000000	0.702254000000
C	0.000000000000	0.000000000000	-1.354393000000
H	0.000000000000	1.072941000000	-1.504737000000
H	0.929194000000	-0.536471000000	-1.504737000000
H	-0.929194000000	-0.536471000000	-1.504737000000

$\mathrm{ArNH}_{2}{ }^{+}$

Ar	-0.044788000000	-0.646804000000	0.000000000000
N	-0.044788000000	1.264386000000	0.000000000000
H	0.559849000000	1.395884000000	0.829016000000
H	0.559849000000	1.395884000000	-0.829016000000

ArOH^{+}

Ar	0.036063000000	-0.589928000000	0.000000000000
O	0.036063000000	1.158332000000	0.000000000000
H	-0.937647000000	1.352049000000	0.000000000000

ArF^{+}
$\begin{array}{lll}\mathrm{Ar} & 0.000000000000 & 0.000000000000 \\ \mathrm{~F} & 0.544661000000\end{array}$
$\begin{array}{llll}\mathrm{F} & 0.000000000000 & 0.000000000000 & -1.089322000000\end{array}$

[^0]: School of Chemical and Material Science, Key Laboratory of Magnetic Molecules \& Magnetic Information Materials, Ministry of Education, Shanxi Normal University, Linfen, Shanxi 041004, People's Republic of China
 E-mail address: lzling@sxnu.edu.cn
 ${ }^{\text {§ }}$ Current address: Department of Chemistry, School of Science, Tianjin University, People's Republic of China.

