Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Regorafenib analogues and their ferrocenic counterparts: synthesis and biological evaluation

Myron Wilde,^a Danielle Arzur,^b Blandine Baratte,^{c,d} Dorian Lefebvre,^{c,d} Thomas Robert,^{c,d} Thierry Roisnel,^a Catherine Le Jossic-Corcos,^b Stéphane Bach,^{*c,d} Laurent Corcos^{*b} and William Erb^{*a}

^a Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France. E-mail: william.erb@univ-rennes1.fr

^b INSERM, UMR 1078, Université de Brest, Génétique Génomique Fonctionnelle et Biotechnologies, Etablissement Français du Sang, Brest, France. E-mail: laurent.corcos@univ-brest.fr

^c Sorbonne Université, CNRS, FR 2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France. E-mail: bach@sb-roscoff.fr

^d Sorbonne Université, CNRS, UMR 8227, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France.

Table of contents

Experimental section: general considerations procedures, compounds analyses	
and X-ray crystallographic details	S2
Kinase inhibition assays	S23
NMR Spectra	S25
Key HMBC correlations observed for the final compounds	
and selected synthetic intermediates.	S146
HPLC Chromatograms	S147
Titration curves for IC ₅₀ determination	S156
Activity curves on cell lines	S159
References	S161

EXPERIMENTAL SECTION

General Considerations. Unless otherwise stated, all reactions were performed under an argon atmosphere with anhydrous solvents using Schlenk technics. THF and Et₂O were distilled over sodium/benzophenone. DMF was distilled over CaH2 under vacuum, MeOH was distilled over magnesium and iodine, MeCN and CH₂Cl₂ were distilled over CaH₂. Unless otherwise stated, all reagents were used without prior purification. Column chromatography separations were achieved on silica gel (40-63 µm). All Thin Layer Chromatographies (TLC) were performed on aluminum backed plates pre-coated with silica gel (Merck, Silica Gel 60 F254). They were visualized by exposure to UV light. PET refers to petroleum ether. Melting points were measured on a Kofler bench. IR spectra were taken on a Perkin-Elmer Spectrum 100 spectrometer. ¹H, ¹³C and ¹⁹F Nuclear Magnetic Resonance (NMR) spectra were recorded either (i) on a Bruker Avance III spectrometer at 300 MHz and 75.4 MHz, respectively, or (ii) Bruker Avance III HD at 500 MHz and 126 MHz, respectively. ¹H chemical shifts (δ) are given in ppm relative to the solvent residual peak and ¹³C chemical shifts are relative to the central peak of the solvent signal. Cp refers to the unsubstituted cyclopentadienyl ring of ferrocene. HPLC analyses were performed on a ThermoFisher Ultimate 3000 apparatus. Iodoferrocene was prepared according to Erb.¹ MTT assays were performed according to the manufacturer recommendations (ThermoFisher, Les Ulys, France).

Crystallography. For **6**, **7**, **19**, **31**, **35** and **39** the X-ray diffraction data were collected using D8 VENTURE Bruker AXS diffractometer at the temperature given in the crystal data. The samples were studied with monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by dual-space algorithm using the *SHELXT* program,² and then refined with full-matrix least-square methods based on F^2 (*SHELXL*).³ Except hydrogen atoms linked to N atom that were introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters. The molecular diagrams were generated by MERCURY (version 3.9).

4-Chloropicolinoyl chloride hydrochloride (11)

Dimethylformamide (100 μ L, 94.4 mg, 1.30 mmol, 0.15 equiv) was added to a solution of thionyl chloride (3.00 mL, 4.89 g, 41.1 mmol, 5.00 equiv) in a round bottom flask under argon and the reaction mixture was heated to 45 °C. 2-Picolinic acid **10** (1.00 g, 8.11 mmol, 1.00 equiv) was added portionwise to control the rate of the reaction. After addition, a condenser was added to the round bottomed flask and the mixture was heated to 70 °C for 18 hours. The mixture was cooled to rt and toluene was added. The resulting precipitate was filtrated on a sintered glass funnel and was washed with toluene. The combined filtrates were concentrated under vacuum using a rotary evaporator. Toluene was added to the crude product as a brown solid (1.34 g, 78%) used directly in the next step. The product was already prepared by following similar protocols but not described.^{4, 5}

¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.67 (d, *J* = 4.7 Hz, 1H, H6), 8.03 (s, 1H, H3), 7.75 (d, *J* = 3.9 Hz, 1H, H5). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 164.8 (C=O), 150.8 (ArCH), 149.8 (ArC), 144.2 (ArC), 127.0 (ArCH), 124.7 (ArCH).

4-Chloro-N-methylpicolinamide (9)

A solution of compound **11** (815 mg, 3.83 mmol, 1.00 equiv) in THF-MeOH (15 and 1 mL, respectively) was added dropwise to a solution of methylamine (40% aqueous solution, 10 mL, 115 mmol, 30.0 equiv) at 0 °C. After addition, the reaction was stirred for one hour during which time the temperature rose to 10 °C. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was dissolved in ethyl acetate. The organic phase was washed three times with water and one time with brine. The organic layer was dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the title product. This was purified by column chromatography over SiO₂, using PET/EtOAc (60:40) to give the title product **9** as a white solid (383 mg, 59%). Analytical data analogous to those reported previously.⁵

Mp 34-40 °C. v_{max} (film)/cm⁻¹ 3343, 1667, 1529, 1404, 1291, 1267, 1180, 1089, 830, 740. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.83 (br s, 1H, NH), 8.61 (d, J = 5.3 Hz, 1H, H6), 8.01 (d, J = 2.1 Hz, 1H, H3), 7.73 (dd, J = 2.1, 5.3 Hz, 1H, H5), 2.82 (d, J = 4.8 Hz, 3H, CH₃). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.1 (C=O), 151.8 (ArC), 150.0 (ArCH), 144.5 (ArC), 126.2 (ArCH), 121.8 (ArCH), 26.1 (CH₃).

4-(3-Fluorophenoxy)-N-methylpicolinamide (7)

Potassium *tert*-butoxide (13.7 g, 122 mmol, 2.00 equiv) and potassium carbonate (4.2 g, 30.5 mmol, 0.50 equiv) were added to a solution of 3-fluorophenol **8** (11.6 mL, 122 mmol, 2.00 equiv) in dimethylformamide (120 mL) at 0 °C and the reaction mixture was stirred for 30 min. A solution of compound **9** (10.38 g, 60.9 mmol, 1.00 equiv) in dimethylformamide (80 mL) was added. After addition, the reaction mixture was warmed to rt and then heated at 110 °C for 16h. The mixture was cooled to rt and was poured into a water (1.3 L) saturated ammonium chloride (300 mL) mixture. The resulting suspension was stirred at rt overnight. This was extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (60:40 to 50:50) to give the title product **7** as a white solid (9.14 g, 61%). Analytical data analogous to those reported previously.⁴

Mp 80-82 °C. v_{max} (film)/cm⁻¹ 3331, 1657, 1589, 1567, 1529, 1483, 1462, 1447, 1413, 1290, 1250, 1224, 1157, 1138, 1117, 961, 900, 884, 758, 732. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.77 (q, *J* = 4.7 Hz, 1H, NH), 8.53 (d, *J* = 5.6 Hz, 1H, ArCH), 7.55 (dd, *J* = 7.9, 7.9 Hz, 1H, ArCH), 7.44 (d, *J* = 2.6 Hz, 1H, ArCH), 7.17-7.21 (m, 3H, 3 x ArCH), 7.08 (dd, *J* = 1.8, 7.8 Hz, 1H, ArCH), 2.80 (d, *J* = 4.7 Hz, 3H, CH₃). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 164.9 (s, ArC), 163.7 (C=O), 162.9 (d, *J* = 246.3 Hz, ArC), 154.5 (d, *J* = 10.9 Hz, ArC), 152.6 (s, ArC), 150.6 (s, ArC), 131.8 (d, *J* = 9.7 Hz, ArCH), 116.9 (d, *J* = 2.9 Hz, ArCH), 114.4 (s, ArCH), 112.8 (d, *J* = 21.1 Hz, ArCH), 109.4 (s, ArCH), 108.7 (d, *J* = 24.1 Hz, ArCH), 26.0 (s, CH₃). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -109.9 (F).

Crystal data for 7. $C_{13}H_{11}FN_2O_2$, M = 246.24, T = 150 K; monoclinic $P 2_{I/C}$ (*I.T.#14*), a = 9.7343(10), b = 13.7655(14), c = 9.5215(10) Å, $\beta = 107.930(4)$ °, V = 1213.9(2) Å³. Z = 4, d = 1.347 g.cm⁻³, $\mu = 0.103$ mm⁻¹. A final refinement on F^2 with 2762 unique intensities and 168 parameters converged at $\omega R_F^2 = 0.1133$ ($R_F = 0.0452$) for 2713 observed reflections with $I > 2\sigma(I)$. CCDC 2017024.

Figure 1. Molecular structure of compound 7 (thermal ellipsoids shown at the 30% probability level).

Figure 2. Hydrogen-bond network observed for compound 7 at the solid state (thermal ellipsoids shown at the 30% probability level).

4-(3-Fluoro-4-nitrophenoxy)-N-methylpicolinamide (12)

Compound 7 (5.02 g, 20.4 mmol, 1.00 equiv) was added portion wise to a solution of sulfuric acid (96%, 5.3 mL) in water (3 mL) at 0 °C. Sulfuric acid was added dropwise until the starting material was fully dissolved. Nitric acid (aqueous 68%, 2.6 mL, 39.6 mmol, 1.95 equiv) was added dropwise over 1 hour. The crude reaction mixture was poured into a solution of saturated sodium bicarbonate at 0 °C and the mixture was made slightly basic by the addition of solid sodium bicarbonate (pH 8). The reaction mixture was extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product as an inseparable mixture of p-12/o-12/7 in a 1:0.7:0.3 ratio used directly in the next step.

4-(4-Amino-3-fluorophenoxy)-N-methylpicolinamide (6)

Powdered iron (5.23 g, 93.7 mmol, 4.60 equiv) was added in one portion to a solution of ammonium chloride (409 mg, 12.2 mmol, 0.60 equiv) in ethanol (21 mL), hydrochloric acid (35%, 6.4 mL) and water (14 mL) and the reaction mixture was stirred for 10 min. A solution of compounds *p*-12/*o*-12/7 from the previous step in ethanol (30 mL) was added dropwise. After addition, the reaction mixture was heated at reflux for 1h. The reaction mixture was cooled to rt and poured into a saturated solution of sodium bicarbonate. The resulting mixture was filtrated over celite[®] which was washed with ethanol and EtOAc. The combined filtrates were concentrated under vacuum to give a solution of the title product in water. This was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using

PET/EtOAc (60:40 to 40:60) with 3% of NEt₃ to give the title product which was triturated in an Et_2O /pentane mixture to afford **6** as a white solid (1.11 g, 21% over 2 steps). Analytical data analogous to those reported previously.⁴

Mp 137-139 °C. v_{max} (film)/cm⁻¹ 3396, 3295, 2943, 1667, 1585, 1569, 1536, 1507, 1470, 1282, 1223, 1141, 1115, 1073, 963, 848,803. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.73 (q, *J* = 4.8 Hz, 1H, NH), 8.46 (d, *J* = 8.6 Hz, 1H, ArCH), 7.37 (d, *J* = 2.6 Hz, 1H, ArCH), 7.08 (dd, *J* = 2.6, 5.6 Hz, 1H, ArCH), 7.00 (dd, *J* = 2.6, 11.8 Hz, 1H, ArCH), 6.86 (dd, *J* = 8.8, 9.9 Hz, 1H, ArCH), 6.78 (dd, *J* = 2.4, 8.8 Hz, 1H, ArCH), 5.21 (s, 2H, NH₂), 2.79 (d, *J* = 4.8 Hz, 3H, CH₃). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 166.4 (s, ArC), 163.8 (C=O), 152.4 (s, ArC), 150.2 (s, ArCH), 150.1 (d, *J* = 240.0 Hz, ArC), 142.2 (d, *J* = 9.4 Hz, ArC), 134.7 (d, *J* = 12.8 Hz, ArC), 117.3 (d, *J* = 2.4 Hz, ArCH), 116.5 (d, *J* = 5.6 Hz, ArCH), 113.7 (s, ArCH), 108.9 (d, *J* = 21.1 Hz, ArCH), 108.5 (s, ArCH), 26.0 (s, CH₃). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -131.1 (F).

Crystal data for 6. $C_{13}H_{12}FN_{3}O_{2}$, M = 261.26, T = 150 K; triclinic P - I (I.T.#2), a = 7.2126(7), b = 7.7988(7), c = 11.6303(11) Å, a = 108.895(3) °, $\beta = 99.835(3)$ °, $\gamma = 97.095(3)$ °, V = 598.52(10) Å³. Z = 2, d = 1.450 g.cm⁻³, $\mu = 0.111$ mm⁻¹. A final refinement on F^{2} with 2726 unique intensities and 187 parameters converged at $\omega R_{F}^{2} = 0.1181$ ($R_{F} = 0.0424$) for 2411 observed reflections with $I > 2\sigma(I)$. CCDC 2017023.

Figure 3. Molecular structure of compound 6 (thermal ellipsoids shown at the 30% probability level).

Figure 4. Hydrogen-bond network observed for compound 7 at the solid state (thermal ellipsoids shown at the 30% probability level).

1-Chloro-4-nitro-2-(trifluoromethyl)benzene (14)

Concentrated sulfuric acid (95%, 15 mL, 270 mmol, 2.60 equiv) was added dropwise to a solution of compound **13** (18.8 g, 104 mmol 1.00 equiv) at 0 °C. A solution of nitric acid (68% solution, 22 mL, 335 mmol, 3.22 equiv) and sulfuric acid (95%, 16 mL, 288 mmol, 2.80 equiv) was added dropwise during 30 min. After addition, the reaction mixture was warmed to rt and stirred for 18h. The reaction

mixture was poured into an ice/water mixture and this was extracted with EtOAc. The combined organic layers were washed with sodium bicarbonate, brine, dried over MgSO₄, filtrated over a plug of silica and concentrated under vacuum using a rotary evaporator to give the crude product as an oil, containing ~15% of the ortho isomer. Ethanol (4 equiv in volume) was added to the oil and this solution was kept at -20 °C for 72h. The resulting solids were filtrated to give a first crop (13.2 g) of the title product. A second crop (7.00 g) was also obtained. The title product **14** was obtained as a white solid (20.2 g, 86%). Analytical data analogous to those reported previously.⁶

Mp < 30 °C. v_{max} (film)/cm⁻¹ 1616, 1585, 1531, 1471, 1353, 1308, 1283, 1142, 1116, 1036, 916, 889, 840, 740. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 8.57 (d, J = 2.6 Hz, 1H, ArCH), 8.36 (dd, J = 2.6, 8.8 Hz, 1H, ArCH), 7.74 (d, J = 8.8 Hz, 1H, ArCH). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 146.3 (s, ArC), 139.5 (ArC), 132.9 (s, ArCH), 130.0 (q, J = 33.1 Hz, ArC), 127.6 (s, ArCH), 123.3 (q, J = 5.5 Hz, ArCH), 121.8 (q, J = 273.8 Hz, CF₃). ¹⁹F NMR (470 MHz, CDCl₃) δ (ppm) -63.4 (CF₃).

4-Chloro-3-(trifluoromethyl)aniline (15)

Powdered iron (15.1 g, 269 mmol, 4.60 equiv) was added in one portion to a solution of ammonium chloride (1.88 g, 35 mmol, 0.60 equiv) in ethanol (98 mL), hydrochloric acid (35%, 16 mL) and water (40 mL) at 80 °C and the reaction mixture was stirred for 5 min. A solution of compound **14** (12.5 g, 58 mmol, 1.00 equiv) in ethanol (15 mL) was added dropwise to the reaction mixture. After addition, the reaction mixture was stirred at 80 °C for 2h. The reaction mixture was cooled to rt and celite[®] (\approx 40 g) was added. Saturated sodium bicarbonate was added to the reaction mixture dropwise over 2h with efficient stirring. The reaction mixture was filtrated over celite[®] washed with EtOAc. The combined filtrates were extracted with EtOAc. The organic phase was washed with brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (90:10 to 60:40) with 2% of NEt₃ to give the title product **15** as a light yellow solid (8.79 g, 81%). Analytical data analogous to those reported previously.⁷

Mp 36-38 °C. v_{max} (film)/cm⁻¹ 3445, 3350, 1629, 1483, 1444, 1337, 1255, 1171, 1125, 1114, 1027, 872, 828. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.22 (d, J = 8.5 Hz, 1H, ArCH), 6.95 (d, J = 2.8 Hz, 1H, ArCH), 6.72 (dd, J = 2.8, 8.5 Hz, 1H, ArCH), 3.84 (br s, 2H, NH₂). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 145.3 (s, ArC), 132.2 (s, ArCH), 128.8 (q, J = 31.1 Hz, ArC), 123.0 (q, J = 273.2 Hz, CF₃), 120.4 (s, ArC), 118.8 (s, ArCH), 113.7 (q, J = 5.4 Hz, ArCH). ¹⁹F NMR (470 MHz, CDCl₃) δ (ppm) -62.8 (CF₃).

<u>4-(4-(3-(4-Chloro-3-(trifluoromethyl)phenyl)ureido)-3-fluorophenoxy)-N-methylpicolinamide</u> (1a)

Compound **15** (149 mg, 0.76 mmol, 1.40 equiv) in CH_2Cl_2 (1.5 mL) was added to a solution of triphosgene (249 mg, 0.83 mmol, 1.50 equiv) in CH_2Cl_2 (1.5 mL). A solution of *N*,*N*-diisopropylethylamine (280 µL, 207 mg, 1.6 mmol, 3.00 equiv) in CH_2Cl_2 (1.5 mL) was added to the suspension formed and the reaction mixture was stirred for 3h. Volatiles were removed under vacuum to give the crude product. Diethyl ether was added to precipitate diisopropylethylamine hydrochloride which was eliminated by decantation. The supernatant was removed with a syringe and was added to a solution of compound **6** (142 mg, 0.54 mmol, 1.00 equiv) in EtOAc (2 mL) and CH_2Cl_2 (0.1 ml) and the reaction mixture was stirred at rt for 18h. The white precipitate was filtrated and triturated with diethyl ether to give 89 mg of the title product **1a**. The combined filtrates were concentrated under vacuum to give the crude product. This was purified by column chromatography over SiO₂ prewashed with NEt₃,

using CH₂Cl₂/MeOH (99.5:0.5 to 98.5:1.5) to give the title product which was triturated in an Et₂O to afford the title product (80 mg). The combined title product **1a** was obtained as a white solid (169 mg, 65%). Analytical data analogous to those reported previously.⁴

Mp 211-212 °C. v_{max} (film)/cm⁻¹ 3388, 3348, 3289, 1718, 1655, 1595, 1540, 1504, 1486, 1430, 1316, 1299, 1206, 1174, 1140, 1129, 969, 870, 835, 742. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 9.63 (s, 1H, NH_{urea}, H22), 8.75-8.77 (br s, 2H, NH_{urea} and NH_{amide}, H23 and H24), 8.53 (d, *J* = 5.7 Hz, 1H, ArCH, H7), 8.15 (t, *J* = 9.1 Hz, 1H, ArCH, H12), 8.12 (s, 1H, ArCH, H16), 7.63 (m, 2H, 2 x ArCH, H19 and H20), 7.43 (d, *J* = 2.6 Hz, 1H, ArCH, H4), 7.33 (dd, *J* = 2.6, 11.6, 1H, ArCH, H9), 7.18 (dd, *J* = 2.6, 5.6 Hz, 1H, ArCH, H6), 7.07 (dd, *J* = 1.9, 9.0 Hz, 1H, ArCH, H13), 2.79 (d, *J* = 4.9 Hz, 3H, CH₃, H1). ¹³C NMR (125 MHz, CDCl₃) δ (ppm) 165.4 (s, ArC, C5), 163.7 (s, C=O_{amide}, C2), 152.7 (d, *J* = 245.4 Hz, ArC, C10), 152.5 (s, ArC, C3), 152.2 (s, C=O_{urea}, C14), 150.4 (s, ArCH, C7), 148.1 (d, *J* = 10.5 Hz, ArC, C8), 139.0 (s, ArC, C15), 132.1 (s, ArC, C19), 126.8 (q, *J* = 30.6 Hz, ArC, C17), 124.9 (d, *J* = 10.7 Hz, ArC, C11), 122.9 (s, ArC, C20), 122.7 (q, *J* = 272.8 Hz, CF₃, C21), 122.5 (s, 2 x ArCH, C12 and C18), 117.0 (d, *J* = 2.4 Hz, ArCH, C13), 116.6 (q, *J* = 5.5 Hz, ArCH, C16), 114.1 (s, ArCH, C6), 109.0 (d, *J* = 23.1 Hz, ArCH, C9), 108.9 (s, ArCH, C4), 25.9 (s, CH₃, C1). ¹⁹F NMR (470 MHz, CDCl₃) δ (ppm) -61.5 (CF₃), -124.4 (F). HRMS, *m*/z 505.0662 (0 ppm) found (calcd for C₂₁H₁₅N₄O₃F₄³⁵ClNa, [M+Na]⁺, requires 505.0661); 521.0392 (2 ppm) found (calcd for C₂₁H₁₅N₄O₃F₄³⁵ClNa, [M+K]⁺, requires 521.04004).

3,4-Dimethoxycyclobut-3-ene-1,2-dione (17)

Trimethylorthoformate (3.80 mL, 35.0 mmol, 2.00 equiv) was added to a solution of squaric acid **16** (2.00 g, 17.5 mmol, 1.00 equiv) in methanol (20 mL) and the reaction mixture was heated at reflux for 4h. The reflux condenser was replaced by a distillation head and methyl formate was distilled off during 3h. The condenser was installed back and the reaction mixture was heated at reflux overnight. Volatiles were removed under vacuum to give the crude product. This was dissolved in CH_2Cl_2 (4 mL) and Et_2O (20 mL) was slowly added. The cloudy mixture was filtrated over cotton wool. The filtrate was cooled to -80 °C during 1 min to precipitate the product. The resulting solids were filtrated and dried under high vacuum to give the title product **17** as a white solid (2.1 g, 84%). Analytical data analogous to those reported previously.⁸

Mp 57-58 °C. v_{max} (film)/cm⁻¹ 2965, 1811, 1720, 1583, 1479, 1354, 1145, 1083, 1035, 923, 829. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.29 (s, 6H, 2 x CH₃). ¹³C NMR (75.4 MHz, CDCl₃) δ (ppm) 189.1 (2 x C=O), 184.4 (2 x C=C), 60.9 (2 x CH₃).

3-((4-Chloro-3-(trifluoromethyl)phenyl)amino)-4-methoxycyclobut-3-ene-1,2-dione (18)

Compound **17** (262 mg, 1.8 mmol, 1.00 equiv) was added to a solution of compound **15** (398 mg, 2.0 mmol, 1.10 equiv) in methanol (26 mL) and the mixture was stirred at rt for 18h followed by 3h at 65 °C. The reaction mixture was cooled to rt and was poured into of Et_2O (50 mL). The resulting yellow solid was removed by filtration and the filtrate was concentrated under vacuum to give the crude product. This was triturated in PET/Et₂O (90:10) and filtrated to give the title product **18** as a pale yellow solid (427 mg, 76% yield).

Mp 169-171 °C. v_{max} (film)/cm⁻¹ 3240, 3178, 3109, 3028, 1800, 1714, 1606, 1564, 1540, 1519, 1489, 1444, 1418, 1329, 1260, 1183, 1145, 1114, 892, 842, 754. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 11.00 (br s, 1H, NH, H13), 7.90 (s, 1H, ArCH, H2), 7.68 (d, J = 8.8 Hz, 1H, ArCH, H5), 7.61 (dd, J = 2.0, 8.8 Hz, 1H, ArCH, H6), 4.39 (s, 3H, CH₃, H12). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 187.5 (s, C=O, C10), 184.2 (s, C=O, C11), 179.4 (s, C=, C9), 168.9 (s, C=, C8), 137.7 (s, ArC, C1), 132.4 (s, C=, C9), 168.9 (s, C=, C8), 137.7 (s, ArC, C1), 132.4 (s, C=, C8), 137.7 (s, ArC, C1), 132.4 (s, C=, C8), 137.7 (s, ArC, C1), 132.4 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C1), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C1), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C1), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C1), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C1), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C8), 148.9 (s, C=, C8), 148.9 (s, C=, C1), 148.9 (s, C=, C1),

ArCH, C5), 127.2 (q, J = 31.1 Hz, ArC, C3), 124.7 (s, ArC, C4), 124.0 (s, ArCH, C6), 122.5 (q, J = 272.9 Hz, CF₃, C7), 118.2 (q, J = 5.5 Hz, ArCH, C2), 60.8 (s, CH₃, C12). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -61.7 (CF₃).

<u>4-(4-((2-((4-Chloro-3-(trifluoromethyl)phenyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)-3-</u> fluorophenoxy)-*N*-methylpicolinamide (1b)

Compound **6** (120 mg, 0.46 mmol, 1.00 equiv) was added to a solution of **18** (150 mg, 0.51 mmol, 1.10 equiv) in methanol (2 mL) and the reaction mixture was heated at 55 °C for 72h. The reaction mixture was cooled to rt and stirred for a further 96h. Volatiles were removed under vacuum to give the crude product. This was purified by column chromatography over SiO₂ prewashed with NEt₃, using CH₂Cl₂/MeOH (99:1 to 80:20), CH₂Cl₂/EtOH (99:1 to 90:10) and EtOAc/MeOH (99:1 to 92:8) to give a material which was further cleaned up by trituration with Et₂O and filtration to give the title product **1b** as a white solid (60.1 mg, 24%).

Mp 206-208 (decomp.) °C. v_{max} (film)/cm⁻¹ 3193, 2989, 1793, 1702, 1580, 1537, 1507, 1485, 1448, 1400, 1328, 1275, 1260, 1216, 1179, 1137, 1034, 997, 971, 909, 971, 909, 823, 750. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 10.54 (br s, 1H, NH_{squaramide}, H25 or H26), 9.96 (br s, 1H, NH_{squaramide}, H25 or H26), 8.78 (q, J = 4.9 Hz, 1H, NH_{anide}, H27), 8.54 (d, J = 5.5 Hz, 1H, ArCH, H7), 8.04 (d, J = 2.0 Hz, 1H, ArCH, H19), 7.96 (t, J = 9.3 Hz, 1H, ArCH, H12), 7.72 (d, J = 8.8 Hz, 1H, ArCH, H22), 7.69 (dd, *J* = 2.3, 8.8 Hz, 1H, ArCH, H23), 7.45 (d, *J* = 2.5 Hz, 1H, ArCH, H4), 7.40 (dd, *J* = 2.6, 11.8 Hz, 1H, ArCH, H9), 7.20 (dd, J = 2.6, 5.6 Hz, 1H, ArCH, H6), 7.16 (dd, J = 1.5, 8.7 Hz, 1H, ArCH, H13), 2.80 (d, J = 4.9 Hz, 3H, CH₃, H1). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 182.3 (s, C=O_{squaramide}, C15 or C16), 182.0 (s, C=O_{squaramide}, C15 or C16), 165.8 (s, C=C_{squaramide}, C14 or C17), 165.4 (s, ArC, C5), 165.2 (s, C=C_{squaramide}, C14 or C17), 163.6 (s, C=O_{amide}, C2), 152.9 (d, J = 247.7 Hz, ArC, C10), 152.5 (s, ArC, C3), 150.5 (s, ArC, C7), 149.5 (d, J = 9.9 Hz, ArC, C8), 138.1 (s, ArC, C18), 132.6 (s, ArCH, C22), 127.3 (q, J = 31.2 Hz, ArC, C20), 124.2 (d, J = 9.9 Hz, ArC, C11), 124.1 (s, ArC, C21), 123.5 (s, ArCH, C23), 123.1 (s, ArCH, C12), 122.6 (q, *J* = 272.8 Hz, CF₃, C24), 117.8 (q, *J* = 5.5 Hz, ArCH, C19), 117.4 (d, *J* = 2.1 Hz, ArCH, C13), 114.2 (s, ArCH, C6), 109.5 (d, *J* = 21.7 Hz, ArCH, C4), 26.0 (s, CH₃, C1). ¹⁹F NMR (282 MHz, DMSO-d₆) δ (ppm) -61.5 (CF₃), -123.4 (F). HRMS, *m*/*z* 557.0612 (0 ppm) found (calcd for $C_{24}H_{15}N_4O_4F_4^{35}ClNa$, [M+Na]⁺, requires 557.06102).

Ethyl 2-((4-chloro-3-(trifluoromethyl)phenyl)amino)-2-oxoacetate (19)

N,*N*-Diisopropylethylamine (1.28 mL, 7.34 mmol, 1.10 equiv) and ethyl chlorooxoacetate (0.965 mL, 8.70 mmol, 1.30 equiv) were added to a solution of compound **15** (1.46 g, 6.67 mmol, 1.00 equiv) in $CH_2Cl_2(12 \text{ mL})$ at 0 °C. After the addition, the reaction mixture was stirred at rt for 30 min before being poured into water. The aqueous phase was extracted with EtOAc. The combined organic layers were washed with water, brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the title product **19** as a white solid (1.71 g, 87%).

Mp 128-130 °C. v_{max} (film)/cm⁻¹ 3327, 1699, 1540, 1479, 1317, 1289, 1164, 1127, 1110, 1031, 1019, 888, 851. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 11.18 (s, 1H, NH, H8), 8.32 (d, J = 2.5 Hz, 1H, ArCH, H2), 8.08 (dd, J = 2.5, 8.9 Hz, 1H, ArCH, H6), 7.72 (d, J = 8.9 Hz, 1H, ArCH, H5), 4.32 (q, J = 7.1 Hz, 2H, CH₂, H11), 1.32 (t, J = 7.1 Hz, 3H, CH₃, H12). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 159.9 (s, C=O_{ester}, C10), 155.6 (s, C=O_{amide}, C9), 137.0 (s, ArC, C1), 132.1 (s, ArCH, C5), 126.7 (q, J = 30.7 Hz, ArC, C3), 125.5 (s, ArC, C4), 125.2 (s, ArCH, C6), 122.6 (q, J = 273.2 Hz, CF₃, C7), 119.3 (q, J = 5.5 Hz, ArCH, C2), 62.6 (s, CH₂, C11), 13.8 (s, CH₃, C12). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -61.6 (CF₃).

Crystal data for 19. $C_{11}H_9ClF_3NO_3$, M = 295.64, T = 150 K; monoclinic $P 2_{I/C}$ (*I.T.#14*), a = 12.3325(13), b = 11.1364(10), c = 9.0892(8) Å, $\beta = 108.654(5)$ °, V = 1182.7(2) Å³. Z = 4, d = 1.660 g.cm⁻³, $\mu = 0.366$ mm⁻¹. A final refinement on F^2 with 2633 unique intensities and 176 parameters converged at $\omega R_F^2 = 0.1064$ ($R_F = 0.0399$) for 2155 observed reflections with $I > 2\sigma(I)$. CCDC 2017025.

Figure 5. Molecular structure of compound 19 (thermal ellipsoids shown at the 30% probability level).

2-((4-Chloro-3-(trifluoromethyl)phenyl)amino)-2-oxoacetic acid (20)

An aqueous solution of potassium hydroxide (1M, 15 mL, 15.0 mmol, 4.20 equiv) was added to a solution of compound **19** (1.06 g, 3.58 mmol, 1.00 equiv) in THF (15 mL) at rt. After addition, the reaction mixture was stirred at rt for 2h. Acetic acid (5 mL) was added and the reaction mixture was stirred at rt for 16h. Volatiles were removed under vacuum using a rotary evaporator. The resulting solid was filtrated and washed with water. The solid was dissolved in a CH_2Cl_2 and hydrochloric acid (2M) mixture. The aqueous layer was extracted three times with CH_2Cl_2 . The combined organic layers were washed with brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the title product **20** as a white solid (599 mg, 62%).

Mp 116-121 °C. v_{max} (film)/cm⁻¹ 3334, 2925, 1684, 1535, 1480, 1424, 1321, 1259, 1166, 1126, 1112, 1035, 893, 828. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 11.12 (br s, 1H, CO₂H, H11), 8.36 (d, *J* = 2.2 Hz, 1H, ArCH, H2), 8.09 (dd, *J* = 2.2, 8.9 Hz, 1H, ArCH, H6), 7.71 (d, *J* = 8.9 Hz, 1H, ArCH, H5). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 161.4 (s, C=O_{acide}, C10), 157.3 (s, C=O_{ester}, C9), 137.3 (s, ArC, C1), 132.1 (s, ArCH, C5), 126.7 (q, *J* = 30.8 Hz, ArC, C3), 125.3 (s, ArC, C6), 122.6 (q, *J* = 273.0 Hz, CF₃, C7), 119.1 (q, *J* = 5.5 Hz, ArCH, C2). ¹⁹F NMR (282 MHz, DMSO-d₆) δ (ppm) -61.6 (CF₃).

<u>N¹-(4-Chloro-3-(trifluoromethyl)phenyl)-N²-(2-fluoro-4-((2-(methylcarbamoyl)pyridin-4-yl)oxy)phenyl)oxalamide (1c)</u>

N,*N*-Diisopropylethylamine (122 μ L, 943 μ mol, 4.15 equiv), EDC·HCl (310 mg, 1.64 mmol, 7.20 equiv) and HOBt (155 mg, 1.00 mmol, 4.40 equiv) were added to a solution of compound **20** (219 mg, 818 μ mol, 3.60 equiv) in CH₂Cl₂ (2 mL) at rt. After addition, the reaction mixture was stirred at rt for 4h. Compound **6** (60.0 mg, 227 μ mol, 1.00 equiv) was added to the reaction mixture which was stirred at rt for 8h. HBTU (380 mg, 1.0 mmol, 4.40 equiv) was added and the mixture was stirred at 50 °C for 14h. The reaction mixture was cooled to rt and CH₂Cl₂ (25 mL) and Et₂O (50 mL) were added. The resulting solid was filtrated and washed with water, methanol and Et₂O to give the title product **1c** as a white solid (107 mg, 33%).

Mp 260-262 °C. v_{max} (film)/cm⁻¹ 3675, 2989, 1668, 1520, 1469, 1412, 1276, 1261, 1138, 1066, 897, 826, 664, 750. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 11.36 (br s, 1H, NH_{oxamide}, H23 or H24), 10.64 (br s, 1H, NH_{oxamide}, H23 or H24), 8.79 (q, *J* = 4.9 Hz, 1H, NH_{amide}, H25), 8.56 (d, *J* = 5.6 Hz, 1H, ArCH, H7), 8.48 (d, *J* = 2.5 Hz, 1H, ArCH, H17), 8.19 (dd, *J* = 2.5, 8.8 Hz, 1H, ArCH, H21), 7.78 (t, *J* = 8.7 Hz, 1H, ArCH, H12), 7.76 (d, *J* = 8.8 Hz, 1H, ArCH, H20), 7.46 (d, *J* = 2.6 Hz, 1H, ArCH, H4), 7.41 (dd, *J* = 2.6, 10.9 Hz, 1H, ArCH, H9), 7.24 (dd, *J* = 2.7, 5.6 Hz, 1H, ArCH, H6), 7.16 (dd, *J* = 2.2, 8.8 Hz, 1H, ArCH, H13), 2.80 (d, *J* = 4.9 Hz, 3H, CH₃, H1). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 164.9 (s, ArC, C5), 163.6 (s, C=O_{amide}, C2), 158.5 (s, C=O_{oxamide}, C14 or C15), 158.2 (s, C=O_{oxamide}, C14 or

C15), 155.7 (d, J = 250.7 Hz, ArC, C10), 152.6 (s, ArC, C3), 151.7 (d, J = 10.4 Hz, ArC, C8), 150.6 (s, ArCH, C7), 137.1 (s, ArC, C16), 132.1 (s, ArCH, C20), 127.3 (s, ArCH, C12), 126.7 (q, J = 30.9 Hz, ArC, C18), 125.6 (s, ArC, C19), 125.4 (s, ArCH, C21), 122.6 (q, J = 272.9 Hz, CF₃, C22), 122.0 (d, J = 12.0 Hz, ArC), 119.5 (q, J = 5.6 Hz, ArCH, C17), 116.9 (d, J = 2.3 Hz, ArCH, C13), 114.5 (s, ArCH, C6), 109.5 (d, J = 22.0 Hz, ArCH, C9), 109.2 (s, ArCH, C4), 26.0 (s, CH₃, C1). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -61.5 (CF₃), -117.1 (F). HRMS, *m*/*z* 533.0614 (1 ppm) found (calcd for C₂₂H₁₅N₄O₄F₄³⁵ClNa, [M+Na]⁺, requires 533.06102); 511.0787 (1 ppm) found (calcd for C₂₂H₁₆N₄O₄F₄³⁵Cl, [M+H]⁺, requires 511.07907).

4-(4-(3-Ferrocenylureido)-3-fluorophenoxy)-N-methylpicolinamide (2a)

A solution of triphosgene (415 mg, 1.50 mmol, 4.00 equiv) in CH_2Cl_2 (2 mL) was added to a solution of compound **23** (215 mg, 1.07 mmol, 2.85 equiv) in CH_2Cl_2 (2 mL). After addition, the reaction mixture was stirred at rt for 15 min in during which a brown suspension was formed. *N*,*N*-Diisopropylethylamine (80.0 µL, 0.41 mmol, 1.10 equiv) was added and the resulting orange solution was stirred at rt for 1h. Volatiles were removed under vacuum to give the intermediate isocyanate. Et₂O was added and the reaction mixture was sonicated. The resulting yellow solution was taken by using a syringe and volatiles were removed under vacuum. The intermediate isocyanate was dissolved in THF (3.6 mL) and compound **6** (98 mg, 0,375 mmol, 1.00 equiv) was added. The reaction mixture was stirred at rt for 48h before volatiles were removed under vacuum to give the crude product. This was purified by column chromatography over SiO₂ prewashed with NEt₃, using CH₂Cl₂/MeOH (100:0 to 95:5) to give the title product which was triturated in Et₂O/PET to afford the title product **2a** as an orange solid (88.5 mg, 49%).

Mp 150-152 °C. v_{max} (film)/cm⁻¹ 3316, 3081, 2970, 1653, 1528, 1489, 1466, 1427, 1292, 1253, 1225, 1188, 1147, 1103, 996, 965, 810. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.77 (q, J = 4.8 Hz, 1H, NH_{amide}, H21), 8.52 (d, J = 5.6 Hz, 1H, ArCH, H7), 8.43 (d, J = 1.8 Hz, 1H, NH_{urea}, H20), 8.26 (d, J = 9.1 Hz, 1H, ArCH, H12), 8.23 (d, J = 1.8 Hz, 1H, NH_{urea}, H19), 7.42 (d, J = 2.5 Hz, 1H, ArCH, H4), 7.29 (dd, J = 2.5, 11.8 Hz, 1H, ArCH, H9), 7.17 (dd, J = 2.6, 5.6 Hz, 1H, ArCH, H6), 7.03 (dd, J = 1.8, 8.9 Hz, 1H, ArCH, H13), 4.51 (t, J = 1.8 Hz, 2H, 2 x FcCH, H16), 4.16 (s, 5H, Cp, H18), 3.97 (t, J = 1.8 Hz, 2H, 2 x FcCH, H17), 2.79 (d, J = 4.8 Hz, 3H, CH₃, H1). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 165.6 (s, ArC, C5), 163.7 (s, C=O_{amide}, C2), 152.5 (s, ArC, C3), 152.4 (s, C=O_{urea}, C14), 151.9 (d, J = 244.4 Hz, ArC, C10), 150.4 (s, ArCH, C7), 147.0 (d, J = 10.5 Hz, ArC, C8), 125.9 (d, J = 10.4 Hz, ArC, C11), 121.2 (s, ArCH, C12), 117.0 (d, J = 2.4 Hz, ArCH, C13), 114.0 (s, ArCH, C6), 108.9 (d, J = 21.5 Hz, ArCH, C9), 108.8 (s, ArCH, C4), 96.0 (s, FcC, C15), 68.7 (s, Cp, C18), 63.7 (s, 2 x FcCH, C17), 60.8 (s, 2 x FcCH, C16), 25.9 (s, CH₃, C1). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -126.1 (F). HRMS, m/z 511.0844 (1 ppm) found (calcd for C₂₄H₂₁N₄O₃F⁵⁶Fe, [M]⁺⁺, requires 488.09416).

Ferrocene carboxaldehyde oxime (S1)

Sodium hydroxide (6.72 g, 168 mmol, 6.00 equiv) was dissolved in ethanol (200 mL) and ferrocene carboxaldehyde (6.0 g, 28 mmol, 1.00 equiv) followed by hydroxylamine hydrochloride (3.90 g, 56 mmol, 2.00 equiv) were added before the reaction mixture was stirred at reflux for 16h. The reaction mixture was cooled to rt and volatiles were removed under vacuum to give the crude product. This was dissolved in CH_2Cl_2 . The organic phase was washed with water, saturated ammonium chloride, water, brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary

evaporator to give the title product S1 as an orange solid (6.40 g, quant.). Analytical data analogous to those reported previously.⁹

Mp 118-120 °C. v_{max} (film)/cm⁻¹ 3178, 2987, 2867, 1795, 1630, 1440, 1375, 1298, 1250, 1202, 1103, 1046, 968, 941, 809, 783. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 8.12 (br s, 1H, OH, H6), 7.98 (s, 1H, =CH, H5), 4.53 (*t*, *J* = 1.8 Hz, 2H, 2 x FcCH, H2), 4.35 (*t*, *J* = 1.8 Hz, 2 x FcCH, H3), 4.22 (s, 5H, Cp, H4). ¹³C NMR (125 MHz, CDCl₃) δ (ppm) 150.1 (=CH, C5), 76.3 (FcC, C1), 70.2 (2 x FcCH, C3), 69.4 (Cp), 67.7 (2 x FcCH, C2).

(Aminomethyl)ferrocene hydrochloride (S2)

THF (180 mL) was added to lithium aluminum hydride (5.31g, 140 mmol, 5.00 equiv) at 0 °C and a solution of compound **S1** (6.40 g, 28.0 mmol, 1.00 equiv) in THF (120 mL) was added dropwise. After addition, the reaction mixture was warmed to rt and then heated at 70 °C for 16h. The reaction mixture was cooled to rt and was carefully poured onto ice before being extracted with EtOAc. The organic was washed with water, brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was dissolved in MeCN (50 mL) and filtrated through a pad of celite[®]. A solution of HCl in Et₂O (\approx 5 M) was added until no more precipitate appeared. The resulting solids were filtrated and washed with Et₂O to give the title product **S2** as a sandy brown solid (4.03 g, 58%). Analytical data analogous to those reported previously.¹⁰

Mp 200-204 °C (decomp.). v_{max} (film)/cm⁻¹ 2895, 2616, 2050, 1600, 1508, 1470, 1380, 1358, 1238, 1105, 1038, 1025, 910, 834, 814. ¹H NMR (300 MHz, CD₃OD) δ (ppm) 4.38 (s, 2H, 2 x FcCH), 4.27 (s, 2H, 2 x FcCH), 4.22 (s, 5H, Cp), 3.92 (s, 2H, CH₂). ¹H NMR (300 MHz, DMSO-d₆) δ (ppm) 8.23 (br s, 3H, NH₃⁺, H6), 4.37 (s, 2H, 2 x FcCH, H2), 4.21 (s, 7H, Cp + 2 x FcCH, H4 + H3), 3.75 (s, 2H, CH₂, H5). ¹³C NMR (75.0 MHz, DMSO-d₆) δ (ppm) 79.7 (FcC, C1), 69.4 (2 x FcCH, C2), 68.6 (Cp, C4), 68.2 (2 x FcCH, C3), 38.2 (CH₂, C5).

(Aminomethyl)ferrocene (22)

The compound **S2** (350 mg, 1.40 mmol, 1.00 equiv) was mixed with Et_2O (20 mL) and 2M NaOH (10 mL) at rt and stirred for 2 min. The layers were separated and the aqueous layer was extracted with Et_2O . The combined organic layer were washed with 2M NaOH, water, brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product **22** (231 mg, 76%) as a low-melting solid, pure enough to be used in the next step.

 $Mp < 30 \ ^{\circ}C. \ v_{max} \ (film)/cm^{-1} \ 3366, \ 3088, \ 2854, \ 1581, \ 1457, \ 1402, \ 1229, \ 1103, \ 1021, \ 999, \ 809. \ ^{1}H \ NMR \ (300 \ MHz, \ CDCl_3) \ \delta \ (ppm) \ 4.15 \ (t, \ J = 1.7 \ Hz, \ 2H, \ 2 \ x \ FcCH), \ 4.13 \ (s, \ 5H, \ Cp), \ 4.10 \ (t, \ J = 1.7 \ Hz, \ 2H, \ 2 \ x \ FcCH), \ 3.53 \ (s, \ 2H, \ CH_2), \ 1.48 \ (br \ s, \ 2H, \ NH_2). \ ^{13}C \ NMR \ (75.0 \ MHz, \ CDCl_3) \ \delta \ (ppm) \ 91.1 \ (FcC), \ 68.4 \ (Cp), \ 67.7 \ (2 \ x \ FcCH), \ 67.2 \ (2 \ x \ FcCH), \ 41.4 \ (CH_2).$

4-(4-(3-Ferrocenylmethylureido)-3-fluorophenoxy)-N-methylpicolinamide (3a)

A solution of triphosgene (239 mg, 0.80 mmol, 1.50 equiv) in CH₂Cl₂ (2 mL) was added to a solution of compound **22** (145 mg, 0.67 mmol, 1.25 equiv) in CH₂Cl₂ (2 mL). After addition, the reaction mixture was stirred at rt for 15 min in during which a brown suspension was formed. A solution of *N*,*N*-diisopropylethylamine (210 μ L, 1.21 mmol, 2.25 mmol) in CH₂Cl₂ (2 mL) was added and the resulting orange solution was stirred at rt for 2h. Volatiles were removed under vacuum to give the intermediate isocyanate. Et₂O was added and the reaction mixture was sonicated. The resulting yellow solution was taken by using a syringe and volatiles were removed under vacuum. The intermediate isocyanate was

dissolved in CH₂Cl₂ (3 mL) and compound **6** (140 mg, 0.54 mmol, 1.00 equiv) was added. The reaction mixture was stirred at rt for 24h before volatiles were removed under vacuum to give the crude product. This was purified by column chromatography over SiO₂, using CH₂Cl₂/MeOH (98:2) with 1% of NEt₃ to give the product. This was further purified by preparative TLC SiO₂, using CH₂Cl₂/MeOH (98:2) with 1% of NEt₃ to give the product which was triturated in Et₂O/PET to afford the title product **3a** as a yellow solid (131 mg, 48%).

Mp 120-123 °C. v_{max} (film)/cm⁻¹ 3342, 3080, 1649, 1590, 1531, 1494, 1465, 1427, 1293, 1225, 1195, 1147, 1105, 996, 967, 811. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.76 (q, J = 4.9 Hz, 1H, NH_{amide}, H22), 8.52 (d, J = 5.6 Hz, 1H, ArCH, H7), 8.50 (d, J = 2.1 Hz, 1H, NH_{urea}, H21), 8.25 (t, J = 9.2 Hz, 1H, ArCH, H12), 7.41 (d, *J* = 2.5 Hz, 1H, ArCH, H4), 7.25 (dd, *J* = 2.5, 11.8 Hz, 1H, ArCH, H9), 7.15 (dd, *J* = 2.6, 5.6 Hz, 1H, ArCH, H6), 7.00 (dd, *J* = 2.4, 9.0 Hz, 1H, ArCH, H13), 6.75 (t, *J* = 5.6 Hz, 1H, NH_{urea}, H20), 4.20 (t, *J* = 1.7 Hz, 2H, 2 x FcCH, H17), 4.19 (s, 5H, Cp, H19), 4.12 (t, *J* = 1.7 Hz, 2H, 2 x FcCH, H18), 4.05 (d, J = 5.6 Hz, 2H, CH₂, H15), 2.79 (d, J = 4.9 Hz, 3H, CH₃, H1). ¹³C NMR (125) MHz, DMSO-d₆) δ (ppm) 165.6 (s, ArC, C5), 163.7 (s, C=O_{amide}, C2), 154.6 (s, C=O_{urea}, C14), 152.5 (s, ArC, C3), 151.7 (d, J = 244.0 Hz, ArC, C10), 150.4 (s, ArCH, C7), 146.6 (d, J = 10.3 Hz, ArC, C8), 126.4 (d, J = 10.5 Hz, ArC, C11), 121.2 (s, ArCH, C12), 116.9 (d, J = 2.3 Hz, ArCH, C13), 113.9 (s, ArCH, C6), 108.9 (s, ArCH, C4), 108.8 (d, J = 22.2 Hz, ArCH, C9), 86.5 (s, FcC, C16), 68.4 (s, Cp, C19), 67.5 (s, 2 x FcCH, C17 or C18), 67.4 (s, 2 x FcCH, C17 or C18), 38.2 (s, CH₂, C15), 26.0 (s, CH₃, C1). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -126.2 (F). HRMS, *m/z* 502.1098 (0 ppm) found (calcd for C₂₅H₂₃N₄O₃F⁵⁶Fe, [M]⁺⁻, requires 502.10981); 525.0998 (0 ppm) found (calcd for C₂₅H₂₃N₄O₃FNa⁵⁶Fe, [M+Na]⁺, requires 525.09958); 541.0729 (1 ppm) found (calcd for C₂₅H₂₃N₄O₃FK⁵⁶Fe, [M+K]⁺, requires 541.07352).

Chloroferrocene (24)

tert-Butyllithium (1.6M, 27.5 mL, 44.0 mmol, 2.00 equiv) was added dropwise to a solution of ferrocene (4.09 g, 22.0 mmol, 1.00 equiv) and potassium *tert*-butoxide (246 mg, 2.20 mmol, 0.10 equiv) in THF (100 mL) at -78 °C. After addition, the reaction mixture was stirred at -78 °C for 75 min. A solution of hexachloroethane (10.4 g, 44.0 mmol, 2.00 equiv) in THF (20 mL) was added dropwise. After addition, the reaction mixture was added and the reaction mixture was diluted with heptane. The organic phase was washed with FeCl₃ (aqueous, 0.2 M), until all unreacted ferrocene was removed as monitored by NMR. The organic layer was washed with water until the aqueous does not turn blue, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by sublimation (70 °C, 3 torr) to give the title product **24** as an orange solid (4.02 g, 85%). Analytical data analogous to those reported previously.¹¹

Mp 60-62 °C. ν_{max} (film)/cm⁻¹ 3092, 1410, 1358, 1345, 1166, 1104, 1018, 999, 880, 811. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 4.41 (t, J = 1.5 Hz, 2H, 2 x FcCH, H2), 4.26 (s, 5H, Cp, H4), 4.07 (t, J = 1.5 H, 2H, 2 x FcCH, H3). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 92.4 (FcC, C1), 70.4 (Cp, C4), 68.0 (2 x FcCH, C2), 66.1 (2 x FcCH, C3).

2-Chloroferrocenecarboxylic acid (25)

sec-Butyllithium (1.2M, 13.5 mL, 16.3 mmol, 1.20 equiv) was added dropwise to a solution of compound **24** (3.01 g, 13.6 mmol, 1.00 equiv) in THF (125 mL) at -78 °C. After addition, the reaction mixture was stirred at -78 °C for 2h. Dry carbon dioxide was bubbled through the mixture for 1 hour at -78 °C. The reaction mixture was warmed to rt and volatiles were removed under vacuum using a rotary

evaporator to give the crude carboxylate. This was extracted with NaOH (aqueous, 2M). The aqueous phase was acidified with sulfuric acid (95%) until pH 1 was reached. The precipitate was extracted with EtOAc. The organic layer was with brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using CH₂Cl₂/MeOH/AcOH (94:4:2) to give the title product **25** as a yellow solid (2.82 g, 78%).

Mp 178-180 °C. v_{max} (film)/cm⁻¹ 3107, 2263, 2134, 1690, 1674, 1546, 1431, 1395, 1264, 1249, 1180, 1103, 1044, 1002, 908, 823, 739. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.95 (br s, 1H, CO₂H, H8), 4.82 (s, 1H, FcCH, H3 or H5), 4.72 (s, 1H, FcCH, H3 or H5), 4.38 (s, FcCH, H4), 4.34 (s, 5H, Cp, H6). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 176.8 (CO₂H, C7), 93.8 (FcC, C2), 73.1 (FcCH, C3 or C5), 72.6 (Cp, C6), 69.8 (FcCH, C3 or C5), 68.8 (FcCH, C4), 66.6 (FcC, C1).

2-Chloroferrocene acyl azide (26)

Diphenylphosphoryl azide (2.1 mL, 9.44 mmol, 1.10 equiv) was added dropwise to a solution of compound **25** (2.27 g, 8.58 mmol, 1.00 equiv) and *N*,*N*-diisopropylethylamine (1.8 mL, 10.3 mmol, 1.20 equiv) in CH₂Cl₂ (20 mL) at 0 °C. After addition, the reaction mixture was warmed to rt and stirred for 18h. Silica was added to the reaction mixture and volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (95:5) to give the title product **26** as a red solid (2.01 g, 81%).

Alternatively, compound **26** can be prepared by following this procedure. Diphenylphosphoryl azide (118 μ L, 0.55 mmol, 1.10 equiv) was added dropwise to a solution of compound **25** (132 mg, 0.50 mmol, 1.00 equiv) and triethylamine (278 μ L, 2.00 mmol, 4.00 equiv) in CH₂Cl₂ (2 mL) at 40 °C. After addition, the reaction mixture was stirred at 40 °C for 15 min. The reaction mixture was cooled to rt and was poured onto HCl (1 M). The reaction mixture was extracted with Et₂O. The combined organic layers were dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using pentane/Et₂O (90:10) to give the title product **26** as a red solid (119 mg, 82%).

Mp 50-52 °C. v_{max} (film)/cm⁻¹ 3118, 2379, 2267, 2144, 1689, 1651, 1567, 1431, 1410, 1390, 1375, 1341, 1284, 1196, 1118, 1101, 1043, 1002, 909, 819, 737. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.74 (dd, J = 1.6, 2.5 Hz, 1H, FcH, H3 or H5), 4.71 (dd, J = 1.6, 2.9 Hz, 1H, FcH, H3 or H5), 4.38 (t, J = 2.7 Hz, 1H, FcCH, H4), 4.37 (s, 5H, Cp, H6). ¹³C NMR (75.4 MHz, CDCl₃) δ (ppm) 175.8 (CON₃, C7), 93.6 (FcC, C2), 73.6 (FcCH, C3 or C5), 72.6 (Cp, C6), 69.5 (FcCH, C3 or C5), 69.2 (FcCH, C4), 68.7 (FcC, C1).

1-(tert-Butoxycarbonyl)amino-2-chloroferrocene (27)

A degassed solution of compound **26** (1.08 g, 5.80 mmol, 1.00 equiv) and *tert*-butanol (21.4 g, 290 mmol, 50.0 equiv) in toluene (6 mL) was heated at 95 °C for 16h. The reaction mixture was cooled to rt and volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (95:5) to give the title product **27** as a yellow solid (1.77 g, 91%).

Mp 136-137 °C. v_{max} (film)/cm⁻¹ 3426, 3220, 3050, 2978, 1699, 1534, 1454, 1391, 1366, 1227, 1155, 1105, 1089, 1049, 1019, 1000, 965, 910, 893, 818, 759, 730, 692. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.31 (br s, 1H, NH, H10), 4.41 (br s, 1H, FcCH, H5), 4.37 (s, 1H, FcCH, H3), 4.24 (s, 5H, Cp, H6), 3.98 (s, 1H, FcCH, H4), 1.42 (s, 9H, 3 x CH₃, H9). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 154.1 (C=O, C7), 91.4 (FcC, C1), 87.1 (FcC, C2), 78.8 (C, C8), 71.1 (Cp, C6), 64.1 (FcCH, C3), 63.0 (FcCH, C5), 61.6 (FcCH, C4), 28.1 (3 x CH₃, C9).

4-(4-(3-(2-Chloroferrocenyl)ureido)-3-fluorophenoxy)-N-methylpicolinamide (2aCl)

A solution of HCl in Et₂O (5.5 M, 8.00 mL, 44.1 mmol, 45.0 equiv) was added to a solution of compound **27** (392 mg, 1.17 mmol, 1.20 equiv) in CH₂Cl₂ (30 mL). After addition, the reaction mixture was stirred at rt for 48h. Volatiles were removed under vacuum to give the crude hygroscopic ammonium. It was dissolved in CH₂Cl₂ (4 mL) and *N*,*N*-diisopropylethylamine (0.81 mL, 8.33 mmol, 8.50 equiv) followed by a solution of triphosgene (380 mg, 1.28 mmol, 1.30 equiv) in CH₂Cl₂ (3 mL) were added. After addition, the reaction mixture was stirred at rt for 6h. Compound **6** (240 mg, 0.98 mmol, 1.00 equiv) was added in one portion and the reaction mixture was stirred at rt for 72h. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using CH₂Cl₂/MeOH/NEt₃ (98:1:1) to give the title product **2aCl** as a pale yellow solid after trituration in a Et₂O/pentane mixture (156 mg, 33%).

Mp 122-123°C (decomp.). v_{max} (film)/cm⁻¹ 3328, 3005, 2989, 1656, 1591, 1542, 1499, 1429, 1394, 1339, 1276, 1261, 1227, 1198, 1149, 1106, 1066, 996, 967, 897, 822, 764, 750, 706. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.95 (s, 1H, NH_{urea}, H22), 8.77 (d, *J* = 4.3 Hz, 1H, NH_{amide}, H23), 8.52 (d, *J* = 5.3 Hz, 1H, ArCH, H7), 8.30 (t, J = 9.1 Hz, 1H, ArCH, H12), 8.27 (s, 1H, NH_{urea}, H21), 7.43 (s, 1H, ArCH, H4), 7.31 (dd, J = 2.2, 11.7 Hz, 1H, ArCH, H9), 7.16 (m, 1H, ArCH, H6), 7.00 (d, J = 8.9 Hz, 1H, ArCH, H13), 4.84 (dd, J = 1.6, 2.4 Hz, 1H, FcCH, H19), 4.39 (dd, J = 1.6, 2.4 Hz, 1H, FcCH, H17) 4.21 (s, 5H, Cp, H20), 4.00 (t, J = 2.4 Hz, 1H, FcCH, H18), 2.80 (d, J = 4.4 Hz, 3H, CH₃, H1). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 165.5 (s, ArC, C5), 163.7 (s, C=O_{amide}, C2), 152.5 (s, ArC, C3), 152.4 (s, C=O_{urea}, C14), 151.8 (d, J = 245.1 Hz, ArC, C10), 150.4 (s, ArCH, C7), 147.1 (d, J = 10.2 Hz, ArC, C8), 125.7 (d, J = 10.6 Hz, ArC, C11), 121.0 (s, ArCH, C12), 117.0 (s, ArCH, C13), 113.9 (s, ArCH, C6), 108.9 (d, J = 20.8 Hz, ArCH, C9), 108.8 (s, ArCH, C4), 92.8 (s, FcC, C15), 84.7 (s, FcC, C16), 70.9 (s, Cp, C20), 63.2 (s, FcCH, C17), 61.3 (s, FcCH, C18), 60.5 (s, FcCH, C19), 25.9 (s, CH₃, C1). ¹⁹F NMR (282 MHz, DMSO- d_6) δ (ppm) -125.9 (F). HRMS, m/z 545.0454 (1 ppm) found (calcd for C₂₄H₂₀N₄O₃F³⁵ClNa⁵⁶Fe, [M+Na]⁺, requires 545.04496); 522.0556 (1 ppm) found (calcd for C₂₄H₂₀N₄O₃F³⁵Cl⁵⁶Fe, [M]⁺⁻, requires 522.05519); 561.0188 (0 ppm) found (calcd for $C_{24}H_{20}N_4O_3F^{35}ClK^{56}Fe$, [M+K]⁺, requires 561.01889).

Ethyl 2-(aminoferrocenyl)-2-oxoacetate (31)

Ethyl chlorooxoacetate (353 mg, 2.60 mmol, 1.30 mmol) and *N*,*N*-diisopropylethylamine (400 μ L, 2.30 mmol, 1.15 equiv) were added dropwise to a solution of compound **23** (400 mg, 2.00 mmol, 1.00 equiv) in THF (20 mL) at 0 °C. After the addition, the reaction mixture was stirred at rt for 5 min before being poured into water. The aqueous phase was extracted with Et₂O. The combined organic layers were washed with water, brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (80:20) to give the title product **31** as a yellow solid (327 mg, 55%).

Mp 112-114 °C. *v*_{max} (film)/cm⁻¹ 3672, 2988, 1650, 1394, 1250, 1066, 891.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.25 (br s, 1H, NH, H9), 4.71 (s, 2H, 2 x FcCH, H2), 4.39 (q, *J* = 7.2 Hz, 2H, CH₂, H7), 4.18 (s, 5H, Cp, H4), 4.07 (s, 2H, 2 x FcCH, H3), 1.43 (t, *J* = 7.2 Hz, 3H, CH₃, H8). ¹³C NMR (75.4 MHz, CDCl₃) δ (ppm) 160.8 (C=O_{ester}, C6), 154.2 (C=O_{amide}, C5), 92.6 (FcC, C1), 69.5 (Cp, C4), 65.3 (2 x FcCH, C3), 63.6 (CH2, C7), 91.7 (2 x FcCH, C2), 14.1 (CH₃, C8).

Crystal data for 31. $C_{14}H_{15}FeNO_3$, M = 301.12, T = 150 K; monoclinic $P 2_{1/c}$ (I.T.#14), a = 12.9052(17), b = 10.4423(13), c = 10.2490(14) Å, $\beta = 108.342(5)$ °, V = 1311.0(3) Å³. Z = 4, d = 1.526

g.cm⁻³, $\mu = 1.153$ mm⁻¹. A final refinement on F^2 with 2963 unique intensities and 176 parameters converged at $\omega R_F^2 = 0.1077$ ($R_F = 0.0419$) for 2471 observed reflections with $I > 2\sigma(I)$. CCDC 2017026.

Figure 6. Molecular structure of compound 31 (thermal ellipsoids shown at the 30% probability level).

Ethyl 2-(aminomethylferrocenyl)-2-oxoacetate (32)

Ethyl chlorooxoacetate (290 μ L, 2.6 mmol, 1.30 equiv) and *N*,*N*-diisopropylethylamine (1.39 mL, 8.0 mmol, 4.00 equiv) were added dropwise to a solution of compound **22.HCl** (503 mg, 2.0 mmol, 1.00 equi) in THF (20 mL) and CH₂Cl₂ (0.2 mL) at 0 °C. After the addition, the reaction mixture was stirred at rt for 15 min before being poured into water. The aqueous phase was extracted with EtOAc. The combined organic layers were washed with water, brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (90:10 to 70:30) to give the title product **32** as a yellow solid (458 mg, 73%).

Mp 128-130 °C. v_{max} (film)/cm⁻¹ 3253, 2983, 1733, 1672, 1524, 1463, 1433, 1372, 1343, 1303, 1257, 1210, 1198, 1105, 1020, 1003, 823, 806, 765. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.34 (br s, 1H, NH, H10), 4.36 (q, J = 7.2 Hz, 2H, CH₂, H8), 4.19-4.20 (m, 8H, Cp + 2 x FcCH + C*H*H, 4 + H2 or H3 + H5), 4.16-4.18 (m, 3H, 2 x FcCH + CH*H*, H2 or H3 + H5), 1.39 (t, J = 7.2 Hz, 3H, CH₃, H9). ¹³C NMR (125 MHz, CDCl₃) δ (ppm) 160.8 (C=O_{ester}, C7), 156.0 (C=O_{amide}, C6), 83.8 (FcC, C1), 68.7 (Cp, C4), 68.5 (2 x FcCH, C2 or C3), 68.4 (2 x FcCH, C2 or C3), 63.4 (CH₂, C8), 39.2 (CH2, C5), 14.1 (CH₃, C9).

2-(Ferrocenylamino)-2-oxoacetic acid (33)

An aqueous solution of potassium hydroxide (2M, 1.70 mL, 3.40 mmol, 5.80 mmol) was added to a solution of compound **31** (172 mg, 0.59 mmol, 1.00 equiv) in THF (2 mL) at rt. After addition, the reaction mixture was stirred at rt for 6h. Hydrochloric acid (1M) was added until neutral pH was reached. The reaction mixture was extracted with Et_2O . The combined organic layers were dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the title product **33** as a tan solid (151 mg, 93%).

Mp 182-185 °C. v_{max} (film)/cm⁻¹ 3457, 3389, 3352, 2983, 1669, 1582, 1563, 1507, 1469, 1410, 1340, 1291, 1261, 1230, 1139, 1040, 998, 958, 892, 810. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 10.24 (br s, 1H, NH, H7), 4.78 (t, *J* = 1.6 Hz, 2H, 2 x FcCH, H2), 4.11 (s, 5H, Cp, H4), 4.02 (t, *J* = 1.6 Hz, 2H, 2 x FcCH, H3). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 161.8 (C=O_{acide}, C6), 156.4 (C=O_{amide}, C5), 93.8 (FcC, C1), 68.9 (Cp, C4), 64.4 (2 x FcCH, C3), 61.4 (2 x FcCH, C2).

2-(Aminomethylferrocenyl)-2-oxoacetic acid (34)

An aqueous solution of potassium hydroxide (1M, 3 mL, 3.00 mmol, 2.70 equiv) was added to a solution of compound **32** (348 mg, 1.1 mmol, 1.00 equiv) in THF (5 mL) at rt. After addition, the reaction mixture was stirred at rt for 6h. Hydrochloric acid (1M) was added until neutral pH was reached. The reaction mixture was extracted with Et₂O. The combined organic layers were dried over MgSO₄, filtrated over

cotton wool and concentrated under vacuum using a rotary evaporator to give the title product **34** as a yellow solid (315 mg, quant.).

Mp 89-91 °C. v_{max} (film)/cm⁻¹ 3398, 3091, 2926, 1679, 1547, 1516, 1448, 1400, 1380, 1330, 1265, 1234, 1154, 1105, 1039, 1025, 1001, 898, 865, 813, 733, 701. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.97 (t, *J* = 6.0 Hz, 1H, NH, H8), 4.19 (t, *J* = 1.8 Hz, 2H, 2 x FcCH, H2), 4.17 (s, 5H, Cp, H4), 4.09 (t, *J* = 1.8 Hz, 2H, 2 x FcCH, H3), 4.03 (d, *J* = 6.2 Hz, 2H, CH₂, H5). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 162.3 (C=O_{acide}, C7), 157.9 (C=O_{amide}, C6), 85.1 (FcC, C1), 68.3 (Cp, C4), 68.2 (2 x FcCH, C2), 67.4 (2 x FcCH, C3), 37.8 (CH₂, C5).

<u>N¹-Ferrocenyl-N²-(2-fluoro-4-((2-(methylcarbamoyl)pyridin-4-yl)oxy)phenyl)oxalamide (2c)</u>

N,*N*-Diisopropylethylamine (108 μ L, 622 μ mol, 2.50 equiv) was added to a solution of compound **33** (62.0 mg, 227 µmol, 1.00 equiv) and HBTU (94.8 mg, 250 µmol, 1.10 equiv) in CH₂Cl₂ (0.6 mL) at rt and the reaction mixture was stirred for 15 min. Compound 6 (60.0 mg, 227 µmol, 1.00 equiv) was added to the reaction mixture which was stirred for 48h at rt. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was further purified by column chromatography over SiO₂, using CH₂Cl₂/MeOH (99.1:0.1 to 98:2) to give the title 2c as a yellow solid (60.2 mg, 51%). Mp 235-237 °C. v_{max} (film)/cm⁻¹ 3193, 2988, 1792, 1701, 1580, 1537, 1507, 1484, 1448, 1402, 1327, 1274, 1259, 1215, 1178, 1136, 1116, 1033, 971, 764, 749. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 10.50 (br s, 1H, NH_{oxamide}, H20), 10.45 (br s, 1H, NH_{oxamide}, H21), 8.79 (q, *J* = 4.6 Hz, 1H, NH_{amide}, H22), 8.56 (d, J = 5.5 Hz, 1H, ArCH, H7), 7.84 (t, J = 8.6 Hz, 1H, ArCH, H12), 7.45 (d, J = 2.3 Hz, 1H, ArCH, H4), 7.40 (dd, *J* = 2.2, 10.9 Hz, 1H, H9), 7.23 (dd, *J* = 2.4, 5.6 Hz, 1H, ArCH, H6), 7.16 (dd, *J* = 1.7, 8.7 Hz, 1H, ArCH, H13), 4.89 (s, 2H, 2 x FcCH, H17), 4.15 (s, 5H, Cp, H19), 4.06 (s, 2H, 2 x FcCH, H18), 2.80 (d, J = 4.8 Hz, 3H, CH₃, H1). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 165.0 (s, ArC, C5), 163.6 (s, C=O_{amide}, C2), 158.4 (s, C=O_{oxamide}, C14 or C15), 157.6 (s, C=O_{oxamide}, C14 or C15), 155.4 (d, *J* = 250.5 Hz, ArC, C10), 152.6 (s, ArC, C3), 151.3 (d, *J* = 10.2 Hz, ArC, C8), 150.6 (s, ArCH, C7), 126.7 (s, ArCH, C12), 122.3 (d, J = 11.8 Hz, ArC, C11), 116.9 (s, ArCH, C13), 114.5 (s, ArCH, C6), 109.4 (d, J = 22.4 Hz, ArCH, C9), 109.2 (s, ArCH, C4), 93.6 (s, FcC, C16), 68.9 (s, Cp, C19), 64.5 (s, 2 x FcCH, C18), 61.5 (s, 2 x FcCH, C17), 26.0 (s, CH₃, C1). ¹⁹F NMR (282 MHz, DMSO-d₆) δ (ppm) -117.8 (F). HRMS, m/z 516.0894 (1 ppm) found (calcd for C₂₅H₂₁N₄O₄F⁵⁶Fe, [M]⁺⁻, requires 516.08907); 539.0789 (0 ppm) found (calcd for C₂₅H₂₁N₄O₄FNa⁵⁶Fe, [M+Na]⁺, requires 539.07884); 555.0520 (1 ppm) found (calcd for C₂₅H₂₁N₄O₄FK⁵⁶Fe, [M+K]⁺, requires 555.05278).

$\frac{N^{1}-(2-Fluoro-4-((2-(methylcarbamoyl)pyridin-4-yl)oxy)phenyl)-N^{2}-(methylferrocenyl)oxalamide}{(3c)}$

N,*N*-Diisopropylethylamine (236 μ L, 1.36 mmol, 3.00 equiv) was added to a solution of compound **34** (156 mg, 0.54 mmol, 1.20 equiv) and HBTU (215 mg, 566 μ mol, 1.25 equiv) in CH₂Cl₂(1 mL) at rt and the reaction mixture was stirred for 2h. Compound **6** (118 mg, 452 μ mol, 1.00 equiv) was added to the reaction mixture which was stirred for 18h at rt. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was further purified by column chromatography over SiO₂, using CH₂Cl₂/MeOH (99.1:0.1 to 98:2) to give a material triturated in an EtOAc/Et₂O mixture to give the title product **3c** (38.1 mg, 16%) as a yellow solid.

Mp 178-180 °C. v_{max} (film)/cm⁻¹ 3193, 2988, 1792, 1701, 1580, 1537, 1507, 1484, 1448, 1402, 1327, 1274, 1259, 1215, 1178, 1136, 1116, 1033, 971, 764, 749. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 9.51 (br s, 1H, NH_{oxamide}, H22), 8.41 (d, *J* = 5.5 Hz, 1H, ArCH, H7), 8.39 (d, *J* = 8.8 Hz, 1H, ArCH, H12), 7.99 (q, *J* = 3.8 Hz, 1H, NH_{amide}, H23), 7.76 (t, *J* = 4.9 Hz, 1H, NH_{oxamide}, H21), 7.73 (d, *J* = 2.1 Hz, 1H,

ArCH, H4), 6.98 (dd, J = 2.1, 5.2 Hz, 1H, ArCH, H6), 6.95 (s, 1H, ArCH, H9), 6.93 (s, 1H, ArCH, H13), 4.23 (s, 9H, CH₂ and 2 x FcCH and Cp, H16 and H18 or H19 and H20), 4.19 (s, 2H, 2 x FcCH, H18 or H19), 3.01 (d, J = 5.0 Hz, 3H, CH₃, H1). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 165.0 (s, ArC, C5), 164.4 (s, C=O_{amide}, C2), 158.7 (s, C=O_{oxamide}, C14), 157.8 (s, C=O_{oxamide}, C15), 153.4 (d, J = 249.7 Hz, ArC, C10), 152.7 (s, ArC, C3), 150.9 (d, J = 10.1 Hz, ArC, C8), 150.0 (s, ArCH, C7), 122.8 (d J = 10.6 Hz, ArC, C11), 112.6 (s, ArCH, C12), 116.9 (d J = 3.3 Hz, ArCH, C13), 114.5 (s, ArCH, C6), 110.6 (s, ArCH, C4), 108.9 (d, J = 21.6 Hz, ArCH, C9), 83.8 (s, FcC, C17), 68.8 (s, Cp, C20), 68.6 (s, 2 x FcCH, C18 or C19), 68.3 (s, 2 x FcCH, C18 or C19), 39.4 (s, CH₂, C16), 26.3 (s, CH₃, C1). ¹⁹F NMR (282 MHz, DMSO-d₆) δ (ppm) -117.8 (F). HRMS, m/z 530.1053 (1 ppm) found (calcd for C₂₆H₂₃N₄O₄Fs⁶Fe, [M+Na]⁺, requires 553.09449); 569.0681 (1 ppm) found (calcd for C₂₆H₂₃N₄O₄FK⁵⁶Fe, [M+K]⁺, requires 569.06843).

4-Chloro-N-ferrocenylpicolinamide (35)

A solution of compound **11** (1.04 g, 4.93 mmol, 1.30 equiv) in CH_2Cl_2 (35 mL) was added dropwise to a solution of compound **23** (768 mg, 3.79 mmol, 1.00 equiv) and *N*,*N*-diisopropylethylamine (994 µL, 3.79 mmol, 1.00 equiv) in CH_2Cl_2 (35 mL) at 0 °C. After addition, the reaction mixture was stirred at the same temperature for 20 min. Ethanol was added and volatiles were removed under vacuum using a rotary evaporator to give the crude product. It was dissolved in EtOAc and the organic phase was washed with water, NaOH (2M), saturated sodium bicarbonate, brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (95:5) followed by CH₂Cl₂/PET/NEt₃ (50:48:2) to give the title product **35** (564 mg, 42%) as a red solid.

Mp 196-200 °C. v_{max} (film)/cm⁻¹ 3193, 2988, 1792, 1701, 1580, 1537, 1507, 1484, 1448, 1402, 1327, 1274, 1259, 1215, 1178, 1136, 1116, 1033, 971, 764, 749. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 9.17 (br s, 1H, NH, H11), 8.49 (d, J = 5.3 Hz, 1H, ArCH, H10), 8.25 (d, J = 2.0 Hz, 1H, ArCH, H7), 7.47 (dd, J = 2.0, 5.3 Hz, 1H, ArCH, H9), 4.8 (t, J = 1.7 Hz, 2H, 2 x FcCH, H2), 4.18 (s, 5H, Cp, C4), 4.08 (t, J = 1.7 Hz, 2H, 2 x FcCH, H3). ¹³C NMR (75.4 MHz, CDCl₃) δ (ppm) 161.1 (C=O, C5), 151.3 (ArC, C6), 149.0 (ArCH, C10), 146.6 (ArC, C8), 126.5 (ArCH, C9), 122.8 (ArCH, C7), 94.2 (FcC, C1), 69.4 (Cp, C4), 65.1 (2 x FcCH, C3), 61.6 (2 x FcCH, C2).

Crystal data for 35. C₁₆H₁₃ClFeN₂O, M = 340.58, T = 150 K; orthorhombic P *n a* 2_I (I.T.#33), a = 13.2083(11), b = 9.7083(8), c = 10.6102(7) Å, V = 1360.55(18) Å³. Z = 4, d = 1.663 g.cm⁻³, $\mu = 1.303$ mm⁻¹. A final refinement on F^2 with 2980 unique intensities and 193 parameters converged at $\omega R_F^2 = 0.0633$ ($R_F = 0.0236$) for 2882 observed reflections with $I > 2\sigma(I)$. CCDC 2017027.

Figure 7. Molecular structure of compound 35 (thermal ellipsoids shown at the 30% probability level).

4-Chloro-N-(ferrocenylmethyl)picolinamide (36)

N,*N*-Diisopropylethylamine (2.00 mL, 11.5 mmol, 3.75 equiv) was added to a solution of **22.HCl** (770 mg, 3.08 mmol, 1.00 equiv) and compound **11** (851 mg, 4.00 mmol, 1.30 equiv) CH_2Cl_2 (20 mL) at 0

°C. After addition, the reaction mixture was warmed to rt and stirred for 2h. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. It was dissolved in EtOAc and the organic phase was washed with NaOH (40%), water, brine, dried over MgSO₄, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (95:5) to give the title product **36** (609 mg, 56%) as a red solid.

Mp 126-128 °C. v_{max} (film)/cm⁻¹ 3372, 3090, 1673, 1555, 1511, 1455, 1329, 1001, 902, 839, 813, 781, 753. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.96 (t, J = 5.7 Hz, 1H, NH, H12), 8.64 (d, J = 5.3 Hz, 1H, ArCH, H11), 8.06 (d, J = 1.8 Hz, 1H, ArCH, H8), 7.76 (dd, J = 1.8, 5.3 Hz, 1H, ArCH, H10), 4.25 (s, 2H, 2 x FcCH, H2), 4.21-4.19 (m, 7H, CH₂ + Cp, H4 + H5), 4.09 (s, 2H, 2 x FcCH, H3). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 162.0 (C=O, C6), 151.7 (ArC, C7), 150.0 (ArCH, C11), 144.6 (ArC, C9), 126.4 (ArCH, C10), 121.9 (ArCH, C8), 85.7 (FcC, C1), 68.3 (Cp, C4), 68.2 (2 x FcCH, C2), 67.4 (2 x FcCH, C3), 37.8 (CH₂, C5).

4-Amino-3-fluorophenol (37)

A mixture of 3-fluoro-4-nitrophenol (1.57 g, 10.0 mmol, 1.00 equiv) and Pd/C (10%, 106 mg) in EtOH (50.0 mL) was vigorously stirred overnight under an atmosphere of hydrogen at rt. The reaction mixture was filtrated over celite[®] which was washed with EtOAc. The combined filtrates were concentrated under vacuum using a rotary evaporator to give the crude product as a grey solid, pure enough to the used in the next step (1.13 g, 89%).

Mp 139-140 °C. v_{max} (film)/cm⁻¹ 3381, 3295, 2936, 2806, 2611, 1610, 1508, 1360, 1297, 1259, 1214, 1138, 1077, 959, 897, 835, 768, 726. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.79 (br s, 1H, OH), 6.61 (dd, J = 8.5, 10.5 Hz, 1H, ArCH), 6.45 (dd, J = 2.6, 12.8 Hz, 1H, ArCH), 6.36 (dd, J = 0.9, 8.5 Hz, 1H, ArCH), 4.37 (br s, 2H, NH₂). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 151.0 (d, J = 236.9 Hz, ArC), 148.6 (d, J = 10.0 Hz, ArC), 127.9 (d, J = 13.2 Hz, ArC), 117.2 (d, J = 5.8 Hz, ArCH), 111.1 (d, J = 2.6 Hz, ArCH), 102.9 (d, J = 21.0 Hz, ArCH).

1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(2-fluoro-4-hydroxyphenyl)urea (38a)

A solution of compound **15** (1.00 g, 5.10 mmol, 1.00 equiv) in CH_2Cl_2 (5 mL) was added to a solution of triphosgene (1.82 g, 6.12 mmol, 1.20 equiv) in CH_2Cl_2 (5 mL). A solution of *N*,*N*-diisopropylethylamine (2.67 mL, 15.3 mmol, 3.00 equiv) in CH_2Cl_2 (5 mL) was added dropwise at 0 °C. After addition, the reaction mixture was warmed to rt and stirred for 1h. Compound **37** (650 mg, 5.10 mmol, 1.00 equiv) was added in one portion and the reaction mixture was stirred at rt for 16h. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (80:20). This was further purified by column solid (401 mg, 22% yield). Analytical data analogous to those reported previously.^{12, 13}

Mp 229-231 °C. ν_{max} (film)/cm⁻¹ 3294, 1674, 1595, 1559, 1518, 1460, 1322, 1178, 1142, 1122, 110, 1032, 966, 814. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 9.64 (s, 1H, OH, H17), 9.30 (s, 1H, NH, H15), 8.24 (s, 1H, NH, H16), 8.09 (d, J = 2.0 Hz, 1H, ArCH, H9), 7.62 (d, J = 9.1 Hz, 1H, ArCH, H5), 7.57-7.59 (m, 2H, 2 x ArCH, H12 and H13), 6.63 (dd, J = 2.6, 12.5 Hz, 1H, ArCH, H2), 6.57 (dd, J = 2.4, 8.7 Hz, 1H, ArCH, H6). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 154.5 (d, J = 10.9 Hz, ArC, C1), 154.4 (d, J = 242.5 Hz, ArC, C3), 152.6 (s, C=O, C7), 139.4 (s, ArC, C11), 131.9 (s, ArCH, C12), 126.7 (q, J = 30.6 Hz, ArC, C10), 124.5 (d, J = 2.5 Hz, ArCH, C5), 122.8 (q, J = 273.0 Hz, CF₃, C14), 122.7 (s, ArCH, C13), 122.1 (s, ArC, C8), 117.6 (d, J = 11.8 Hz, ArC, C4), 116.5 (q, J = 5.7 Hz, ArCH, C9),

110.9 (d, J = 2.2 Hz, ArCH, C6), 102.6 (d, J = 21.9 Hz, ArCH, H2). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -61.5 (CF₃), -125.3 (F). HRMS, m/z 371.0180 (0 ppm) found (calcd for C₁₄H₉N₂O₂F₄³⁵ClNa, [M+Na]⁺, requires 371.01809).

<u>3-((4-Chloro-3-(trifluoromethyl)phenyl)amino)-4-((2-fluoro-4-hydroxyphenyl)amino)cyclobut-3-</u> ene-1,2-dione (38b)

Compound **37** (462 mg, 3.62 mmol, 1.20 equiv) was added to a solution of compound **18** (924 mg, 3.02 mmol, 1.00 equiv) in methanol (3 mL) and the reaction mixture was stirred at rt for 48h and then at 60 °C for 3h. The reaction mixture was cooled to rt and volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (50:50) to EtOAc/MeOH (98:2) to CH₂Cl₂/MeOH (90:10) to give a material which was triturated in a Et₂O/pentane (50:50) mixture to give the title product **38b** (722 mg, 60%) as a white solid.

Mp 170-172 °C. v_{max} (film)/cm⁻¹ 3196, 1794, 1692, 1607, 1582, 1551, 1522, 1482, 1448, 1325, 1303, 1260, 1236, 1170, 1144, 1129, 1108, 1098, 1031, 967, 883, 853, 840. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 10.3 (br s, 1H, NH, H18 or H19), 9.83 (br s, 1H, OH, H20), 9.61 (br s, 1H, NH, H18 or H19), 7.97 (s, 1H, ArCH, H12), 7.64-7.59 (m, 2H, 2 x ArCH, H15 and H16), 7.53 (t, *J* = 9.5 Hz, 1H, ArCH, H5), 6.66 (dd, *J* = 2.4, 12.7 Hz, 1H, ArCH, H2), 6.59 (dd, *J* = 2.1, 8.8 Hz, 1H, ArCH, H6). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 182.1 (s, C=O, C8 or C9), 181.5 (s, C=O, C8 or C9), 166.2 (s, C=C, C7 or C10), 164.4 (s, C=C, C7 or C10), 155.4 (d, *J* = 10.6 Hz, ArC, C1), 153.7 (d, *J* = 243.5 Hz, ArC, C3), 138.3 (s, ArC, C14), 132.5 (s, ArCH, C15), 127.4 (q, *J* = 31.2 Hz, ArC, C13), 123.7 (s, ArC, C11), 123.4 (s, ArCH, C16), 123.0 (s, ArCH, C5), 122.6 (q, *J* = 273.5 Hz, CF₃, C17), 117.5 (s, ArC, C4), 117.4 (q, *J* = 5.6 Hz, ArCH, C12), 111.4 (d, *J* = 1.5 Hz, ArCH, C6), 102.9 (d, *J* = 21.5 Hz, ArCH, C2). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -61.6 (CF₃), -125.5 (F). HRMS, *m*/z 423.0130 (0 ppm) found (calcd for C₁₇H₉N₂O₃F₄³⁵ClNa, [M+Na]⁺, requires 423.0130).

4-(4-Amino-3-fluorophenoxy)-N-ferrocenylpicolinamide (39)

A solution of potassium *tert*-butoxide (210 mg, 1.71 mmol, 1.40 equiv) in THF (1.3 mL) was added to a solution of compound **37** (248 mg, 1.71 mmol, 1.40 equiv) in NMP (4 mL) at 0 °C. The reaction mixture was warmed to rt and stirred for 2h. A solution of compound **35** (436 mg, 1.22 mmol, 1.00 equiv) in THF (10 mL) was added. A distillation head was added and the reaction mixture was heated at 120 °C. After all the THF was distilled, the distillation head was removed and the reaction mixture was heated at 120 °C for 16h. The reaction mixture was cooled to rt, silica was added and volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (70:30 to 50:50) to CH₂Cl₂/ EtOAc (95:5) to give the title product **39** (279 mg, 52%) as a yellow solid.

Mp 166-168 °C. v_{max} (film)/cm⁻¹ 3454, 3347, 2976, 1666, 1589, 1506, 1471, 1411, 1291, 1226, 1105, 1066, 997, 968. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 10.08 (br s, 1H, NH, H18), 8.54 (d, J = 5.6 Hz, 1H, ArCH), 7.43 (d, J = 2.1 Hz, 1H, ArCH, H7), 7.15 (dd, J = 2.3, 5.2 Hz, 1H, ArCH, H9), 7.04 (dd, J = 1.9, 11.6 Hz, 1H, ArCH, H12), 6.88 (m, 1H, ArCH, H15), 6.81 (dd, J = 2.0, 8.7 Hz, 1H, ArCH H16), 5.24 (s, 2H, NH₂, H17), 4.92 (s, 2H, 2 x FcCH, H2), 4.09 (s, 5H, Cp, H4), 4.01 (s, 2H, 2 x FcCH, H3). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 166.6 (s, ArC, C8), 161.6 (s, C=O, C5), 152.0 (s, ArC, C6), 150.2 (s, ArCH, C10), 150.1 (d, J = 240.2 Hz, ArC, C13), 142.1 (d, J = 9.4 Hz, ArC, C11), 134.7 (d, J = 12.8 Hz, ArC, C14), 117.4 (d, J = 2.1 Hz, ArCH, C16), 116.5 (d, J = 5.6 Hz, ArCH, C15), 113.9 (s, ArCH, C9), 109.0 (d, J = 21.0 Hz, ArCH, C12), 108.5 (s, ArCH, C7), 94.7 (s, FcC, C1), 68.8 (s, Cp,

C4), 64.1 (s, 2 x FcCH, C3), 61.3 (s, 2 x FcCH, C2). ¹⁹F NMR (282 MHz, DMSO-d₆) δ (ppm) -131.1 (F).

Crystal data for 39. $C_{22}H_{18}FFeN_{3}O_{2}$, M = 431.24, T = 150 K; triclinic P - I (I.T.#2), a = 11.2927(11), b = 13.7746(14), c = 14.1675(15) Å, a = 65.688(3)°, $\beta = 68.371(4)$ °, $\gamma = 88.915(4)$ °, V = 1843.9(3) Å³. Z = 4, d = 1.553 g.cm⁻³, $\mu = 0.852$ mm⁻¹. A final refinement on F^{2} with 8364 unique intensities and 526 parameters converged at $\omega R_{F}^{2} = 0.0991$ ($R_{F} = 0.0466$) for 6413 observed reflections with $I > 2\sigma(I)$. CCDC 2017028.

Figure 8. Molecular structures of compound 39 (thermal ellipsoids shown at the 30% probability level). Two molecules were found in the asymmetric unit.

Figure 9. Hydrogen-bond network observed for compound 39 at the solid state (thermal ellipsoids shown at the 30% probability level).

4-(4-Amino-3-fluorophenoxy)-N-(ferrocenylmethyl)picolinamide (40)

A solution of potassium *tert*-butoxide (118 mg, 0.92 mmol, 1.40 equiv) in THF (1 mL) was added to a solution of compound **37** (118 mg, 0.92 mmol, 1.40 equiv) in NMP (1 mL) at 0 °C. The reaction mixture was warmed to rt and stirred for 3h. Compound **36** (236 mg, 0.66 mmol, 1.00 equiv) was added and the reaction mixture was heated at 115 °C for 16h. The reaction mixture was cooled to rt, silica was added and volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO₂, using PET/EtOAc (70:30 to 50:50) to give the product

contaminated with NMP. The product was precipitated by the addition of water and isolated by filtration to give the title product **40** as a pale yellow solid (210 mg, 71% yield).

Mp 156-158 °C. v_{max} (film)/cm⁻¹ 3457, 3390, 3354, 3180, 3080, 1670, 1629, 1583, 1563, 1511, 1470, 1436, 1413, 1340, 1291, 1263, 1232, 1140, 1117, 997, 959, 930, 893, 859, 821. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 8.87 (t, J = 6.1 Hz, 1H, NH, H19), 8.50 (d, J = 5.6 Hz, 1H, ArCH, H11), 7.39 (d, J = 2.6 Hz, 1H, ArCH, H8), 7.11 (dd, J = 2.7, 5.6 Hz, 1H, ArCH, H10), 7.02 (dd, J = 2.5, 11.8 Hz, 1H, ArCH, H13), 6.86 (t, J = 9.2 Hz, 1H, ArCH, H16), 6.79 (dd, J = 2.5, 8.7 Hz, 1H, ArCH, H17), 5.22 (br s, 2H, NH2, H18), 4.22 (t, J = 1.7 Hz, 2H, 2 x FcCH, H2), 4.19 (s, 5H, Cp, H4), 4.16 (d, J = 6.1 Hz, 2H, CH₂, H5), 4.09 (t, J = 1.7 Hz, 2H, 2 x FcCH, H3). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 166.4 (s, ArC, C9), 162.6 (s, C=O, C6), 152.2 (s, ArC, C7), 150.3 (s, ArCH, C11), 150.1 (d, J = 240.7 Hz, ArC, C14), 142.1 (d, J = 9.4 Hz, ArC, C12), 134.7 (d, J = 12.8 Hz, ArC, C15), 117.3 (d, J = 2.5 Hz, ArCH, C17), 116.5 (d, J = 5.7 Hz, ArCH, C16), 113.8 (s, ArCH, C10), 108.9 (d, J = 21.0 Hz, ArCH, C13), 108.6 (s, ArCH, C8), 85.8 (s, FcC, C1), 68.3 (s, Cp, C4), 68.1 (s, 2 x FcCH, C2), 67.4 (s, 2 x FcCH, C3), 37.7 (s, CH₂, C5). ¹⁹F NMR (282 MHz, DMSO-d₆) δ (ppm) -131.1 (F).

<u>4-(4-(3-(4-Chloro-3-(trifluoromethyl)phenyl)ureido)-3-fluorophenoxy)-N-ferrocenylpicolinamide</u> (4a)

A solution of triphosgene (115 mg, 389 μ mol, 1.30 equiv) in CH₂Cl₂ (1.5 mL) was added to a solution of compound **39** (129 mg, 299 μ mol, 1.00 equiv) in CH₂Cl₂ (1.5 mL). After addition, the reaction mixture was stirred at rt for 15 min in during which a red suspension formed. A solution of *N*,*N*-diisopropylethylamine (156 μ L, 0.90 mmol, 3.00 equiv) in CH₂Cl₂ (1.5 mL) was added and the reaction mixture was stirred for at rt for 2h. Triphosgene (100 mg, 329 μ mol, 1.10 equiv) was added and the reaction mixture was stirred for 1h. Compound **15** (176 mg, 0.90 mmol, 3.00 equiv) was added and the reaction mixture was stirred at rt for 48h. Silica was added to the reaction mixture and volatiles were removed under vacuum to give the title product. This was purified by column chromatography over SiO₂ prewashed with NEt₃, using CH₂Cl₂/MeOH (99:1) to give the title product **4a** as a yellow solid (54 mg, 28%).

Mp 158-160 °C. v_{max} (film)/cm⁻¹ 3328, 2989, 1657, 1592, 1541, 1500, 1483, 1420, 1321, 1276, 1261, 1222, 1198, 1176, 1140, 1104, 1047, 974, 870, 824, 764, 750. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 10.12 (br s, 1H, NH_{amide}, H27), 9.58 (br s, 1H, NH_{urea}, H25), 8.76 (br s, 1H, NH_{urea}, H26), 8.60 (d, J = 5.5 Hz, 1H, ArCH, H10), 8.18 (t, J = 9.0 Hz, 1H, ArCH, H15), 8.13 (s, 1H, ArCH, H19), 7.63 (s, 2H, 2 x ArCH, H22 and H23), 7.49 (d, J = 2.4 Hz, 1H, ArCH, H7), 7.37 (dd, J = 2.4, 11.5 Hz, 1H, ArCH, H12), 7.25 (dd, *J* = 2.4, 5.5 Hz, 1H, ArCH, H9), 7.11 (dd, *J* = 1.5, 9.0 Hz, 1H, ArCH, H16), 4.93 (s, 2H, 2 x FcCH, H2), 4.09 (s, 5H, Cp, H4), 4.02 (s, 2H, 2 x FcCH, H3). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 165.7 (s, ArC, C8), 161.5 (s, C=O_{amide}, C5), 152.8 (d, J = 245.4 Hz, ArC, C13), 152.2 and 152.1 (2 x s, C=O_{urea} and ArC, C17 and C6), 150.4 (s, ArCH, C10), 148.1 (d, J = 10.2 Hz, ArC, C11), 139.0 (s, ArC, C18), 132.1 (s, ArCH, C22), 126.8 (q, J = 30.4 Hz, ArC, C20), 124.9 (d, J = 10.7 Hz, ArC, C14), 122.9 (s, ArCH, C23), 122.7 (q, J = 273.5 Hz, CF₃, C24), 122.6 (s, ArCH, C15), 122.5 (s, ArC, C21), 117.2 (d, J = 2.3 Hz, ArCH, C16), 116.6 (q, J = 5.7 Hz, ArCH, C19), 114.4 (s, ArCH, C9), 109.2 (d, J = 22.0 Hz, ArCH, C12), 108.9 (s, ArCH, C7), 94.7 (s, FcC, C1), 68.8 (s, Cp, C4), 64.1 (s, 2 x FcCH, C3), 61.3 (s, 2 x FcCH, C2). ¹⁹F NMR (282 MHz, DMSO-d₆) δ (ppm) -61.5 (CF₃), -124.3 (F). HRMS, m/z 652.0579 (0 ppm) found (calcd for C₃₀H₂₁N₄O₃F₄³⁵Cl⁵⁶Fe, [M]⁺⁻, requires 652.05822); 675.0476 (1 ppm) found (calcd for C₃₀H₂₁N₄O₃F₄³⁵ClNa⁵⁶Fe, [M+Na]⁺, requires 675.04799); 691.0208 (2 ppm) found (calcd for C₃₀H₂₁N₄O₃F₄³⁵ClK⁵⁶Fe, [M+K]⁺, requires 691.02193).

<u>4-(4-(3-(4-Chloro-3-(trifluoromethyl)phenyl)ureido)-3-fluorophenoxy)-N-</u> (ferrocenylmethyl)picolinamide (5a)

A solution of triphosgene (80.0 mg, 269 μ mol, 1.20 equiv) in CH₂Cl₂ (0.5 mL) was added to a solution of compound **40** (100 mg, 224 μ mol, 1.00 equiv) in CH₂Cl₂ (0.5 mL). After addition, the reaction mixture was stirred at rt for 25 min in during which an orange suspension formed. A solution of *N*,*N*-diisopropylethylamine (148 μ L, 851 mmol, 3.80 equiv) in CH₂Cl₂ (0.5 mL) was added and the reaction mixture was stirred for at rt for 90 min. Compound **15** (162 mg, 828 μ mol, 3.70 equiv) was added and the reaction mixture was stirred at rt for 48h. Volatiles were removed under vacuum to give the title product. This was purified by a first column chromatography over SiO₂, using CH₂Cl₂/MeOH (99:1 to 98:2) with 2% NEt₃ and a second column chromatography over SiO₂, using PET/EtOAc (60:40) with 2% NEt₃ to give the title product **5a** as a yellow solid (49 mg, 33%).

Alternatively, the following protocol can also be followed. A solution of triphosgene (267 mg, 0.90 mmol, 3.00 equiv) in CH₂Cl₂ (2.0 mL) was added to a solution of compound **15** (117 mg, 0.60 mmol, 2.00 equiv) in CH₂Cl₂ (2.0 mL). After addition, the reaction mixture was stirred at rt for 15 min in during which an orange suspension formed. *N*,*N*-Diisopropylethylamine (209 μ L, 1.20 mmol, 4.00 equiv) was added and the reaction mixture was stirred for at rt for 60 min. Volatiles were removed under vacuum and diethyl ether was added to the residue which was sonicated. The solution was transferred into another round-bottom flask and volatiles were removed under vacuum. THF (4.0 mL) was added to the residue and compound **40** (134 mg, 0.30 mmol, 1.00 equiv) was added in one portion. The reaction mixture was stirred at rt for 16h. Volatiles were removed under vacuum to give the crude product. This was purified by a first column chromatography over SiO₂, using CH₂Cl₂/MeOH (99:1) with 1% NEt₃ to give the product. Final trituration in pentane afforded the title product **5a** as a yellow solid (170 mg, 85%).

Mp 208-211 °C. v_{max} (film)/cm⁻¹ 3340, 1715, 1655, 1598, 1530, 1481, 1417, 1281, 1260, 1191, 1174, 1126, 1107, 1028, 999, 969, 874, 822. ¹H NMR (500 MHz, DMSO-d₆) δ (ppm) 9.58 (br s, 1H, NH_{urea}, H26), 8.90 (t, J = 5.8 Hz, 1H, NH_{amide}, H28), 8.75 (br s, 1H, NH_{urea}, H27), 8.55 (d, J = 5.6 Hz, 1H, ArCH, H11), 8.16 (t, J = 9.0 Hz, 1H, ArCH, H16), 8.13 (s, 1H, ArCH, H20), 7.62 (s, 2H, 2 x ArCH, H23 and H24), 7.46 (d, *J* = 2.2 Hz, 1H, ArCH, H8), 7.33 (dd, *J* = 1.9, 11.5 Hz, 1H, ArCH, H13), 7.20 (dd, *J* = 2.1, 5.3 Hz, 1H, ArCH, H10, 7.07 (d, J = 8.8 Hz, 1H, ArCH, H17), 4.23 (s, 2H, 2 x FcCH, H2), 4.19 (s, 5H, Cp, H4), 4.17 (d, J = 6.1 Hz, 2H, CH₂, H5), 4.09 (s, 2H, 2 x FcCH, H3). ¹³C NMR (125 MHz, DMSO-d₆) δ (ppm) 165.6 (s, ArC, C9), 162.5 (s, C=O_{amide}, C6), 152.8 (d, J = 245.4 Hz, ArC, C14), 152.4 (s, C=O_{urea}, C18), 152.2 (s, ArC, C7), 150.6 (s, ArCH, C11), 148.1 (d, J = 10.6 Hz, ArC, C12), 139.0 (s, ArC, C19), 132.1 (s, ArCH, C23), 126.8 (q, J = 30.6 Hz, ArC, C21), 124.9 (d, J = 10.7 Hz, ArC, C15), 122.9 (s, ArCH, C24), 122.8 (q, J = 273.0 Hz, CF₃, C25), 122.6 (s, ArCH and ArC, C16 and C22), 117.1 (d, J = 1.4 Hz, ArCH, C17), 116.6 (q, J = 5.4 Hz, ArCH, C20), 114.3 (s, ArCH, C10), 109.1 (d, J = 22.1 Hz, ArCH, C13), 109.0 (s, ArCH, C8), 85.8 (s, FcC, C1), 68.3 (s, Cp, C4), 68.2 (s, 2 x FcCH, C2), 67.4 (s, 2 x FcCH, C3), 37. (s, CH₂, C5). ¹⁹F NMR (470 MHz, DMSO-d₆) δ (ppm) -61.5 (CF_3) , -124.4 (F). HRMS, m/z 652.0579 (0 ppm) found (calcd for $C_{31}H_{23}N_4O_3F_4^{-35}Cl^{56}Fe$, [M]⁺, requires 666.07387); 689.0640 (0 ppm) found (calcd for $C_{31}H_{23}N_4O_3F_4^{35}CINa^{56}Fe$, [M+Na]⁺, requires 689.06364).

Kinase inhibition assays

Kinase assays were performed in 384-well plates using the ADP-GloTM assay kit (Promega, Madison, WI) according to the recommendations of the manufacturer. As described by Zegzouti et al.,¹⁴ this assay is a luminescent ADP detection assay that provides an homogeneous and high-throughput screening method to measure kinase activity by quantifying the amount of ADP produced during a kinase reaction. Briefly, the reactions were carried out in a final volume of 6 µl for 30 min at 30°C in appropriate kinase buffer, with either protein or peptide as substrate in the presence of 10µM ATP (see hereafter). After that, 6 µl of ADP-GloTM Kinase Reagent was added to stop the kinase reaction. After an incubation time of 50 min at room temperature (RT), 12 µl of Kinase Detection Reagent was added for one hour at RT. The transmitted signal was measured using the Envision (PerkinElmer, Waltham, MA) microplate luminometer and expressed in Relative Light Unit (RLU). The kinase assays were performed in duplicate (n=2) in the absence or presence of 1μ M and 10μ M of the tested compounds. Kinase activities are expressed in % of maximal activity, i.e. measured in the absence of inhibitor. To validate each kinase assay, the following model inhibitors were used under the same conditions than the tested compounds: Staurosporine from Streptomyces sp. (#S5921, Sigma-Aldrich) for CK1c; Indirubin-3'-oxime (#I0404, Sigma-Aldrich) for CDK5/p25, CDK9/CyclinT, RnDYRK1A and MmCLK1; CHR-6494 (#SML0648, Sigma-Aldrich) for HASPIN; Tofacitinib (CP-690550, #S2789, Selleckchem) for JAK3; Imatinib mesylate (STI571, #S1026, Selleckchem) for ABL1; SGI-1776 (#S2198, Selleckchem) for Pim1; Regorafenib (BAY 73-4506, Selleckchem) for VEGFR2.

Protein Kinase	Enzyme Description	Substrate*	Buffer
		(Working concentration)	used**
CDK5/p25	Human, recombinant, expressed in bacteria	Histone H1	Α
		$(37.2\mu M)$	
CDK9/CyclinT	Human, recombinant, expressed by	Peptide:	Α
	baculovirus in Sf9 insect cells	YSPTSPSYSPTSPSYSPTSPSKKK	
		Κ	
		$(83\mu M)$	
CLK1	From Mus musculus, recombinant, expressed	Peptide: GRSRSRSRSRSRSR	Α
	in bacteria	(57.3µM)	
DYRK1A	From Rattus norvegicus, amino acids 1 to 499	Peptide: KKISGRLSPIMTEQ	Α
	including the kinase domain, recombinant,	$(10.7\mu M)$	
	expressed in bacteria, DNA vector kindly		
	provided by Dr. W. Becker, Aachen,		
	Germany		
PIM1	Human proto-oncogene, recombinant,	Histone H1	Α
	expressed in bacteria	(18.6µM)	
GSK3b	Human, recombinant, expressed by	GS-1 peptide:	Α
	baculovirus in Sf9 insect cells	YRRAAVPPSPSLSRHSSPHQSpED	
		EEE ***	
		(20µM)	
HASPIN	Human, kinase domain, amino acids 470 to	Histone H3 peptide (1-21):	Α
	798, recombinant, expressed in bacteria	ARTKQTARKSTGGKAPRKQLA	
		(8µM)	
СК1ε	Human, recombinant, expressed by	Peptide: RRKHAAIGSpAYSITA ***	Α
	baculovirus in Sf9 insect cells	(170µM)	
ABL1	Human, recombinant, expressed by	Peptide: EAIYAAPFAKKK	Α
	baculovirus in Sf9 insect cells	(127µM)	
EGFR	Human, recombinant, expressed by	Poly(L-glutamic acid – L-tyrosine)	Α
	baculovirus in Sf9 insect cells	sodium salt	
		(0.17µg/µL)	
VEGFR2	Human, recombinant, expressed by	Poly(L-glutamic acid – L-tyrosine)	A
	baculovirus in Sf9 insect cells	sodium salt	
		(0.17µg/µL)	
JAK3	Human, recombinant, expressed by	Peptide: GGEEEEYFELVKKKK	Α
	baculovirus in Sf9 insect cells	(94µM)	

Table S1: Experimental conditions used for protein kinase assays.

* Peptide substrates were obtained from ProteoGenix (Schiltigheim, France) or Sigma for Histone H1 and Poly (L-glutamic acid – L-tyrosine) sodium salt; ** composition of the buffer A: 10 mM MgCl₂, 1 mM EGTA, 1 mM DTT, 25 mM Tris-HCl pH 7.5, 50 µg/mL heparin; *** "Sp" stands for phosphorylated serine.

COSY NMR

HSQC NMR

Compound 9

¹H NMR

¹³C NMR

DEPT 135 NMR

Compound 7

¹H NMR

¹³C NMR

Compound 6

¹H NMR

¹³C NMR

DEPT 135 NMR

Compound 14

¹H NMR

¹³C NMR

DEPT 135 NMR

¹⁹F NMR

Compound 15

¹H NMR

¹³C NMR

DEPT 135 NMR

Compound 1a

¹H NMR

HMBC NMR

Compound 17

MeO OMe

¹H NMR

DEPT 135 NMR

Compound 18

CI_{4} GI_{1} G

¹H NMR

HMBC NMR

Compound 1b

¹H NMR

HMBC NMR

Compound 19

¹H NMR

Compound 20

¹H NMR

Compound 1c

¹H NMR

HMBC NMR

Compound 2a

¹H NMR

HMBC NMR

Compound S1 ¹H NMR

DEPT 135 NMR

HMBC NMR

Aminomethylferrocene hydrochloride (S2)

HSQC NMR

HMBC NMR

Aminomethylferrocene (22)

¹H NMR

Compound 3a

¹H NMR

HMBC NMR

¹⁹F NMR

Compound 24

¹H NMR

10 0

Compound 25

¹H NMR

Compound 26

¹H NMR

HMBC NMR

HMBC NMR

NOESY NMR

Compound 2aCl

¹H NMR

۶-

COSY NMR

HMBC NMR

¹⁹F NMR

Compound 31

¹H NMR

HMBC NMR

Compound 32

¹H NMR

HSQC NMR

Compound 33

¹H NMR

HMBC NMR

HSQC NMR

Compound 2c

F

¹⁹F NMR

Compound 3c

DEPT 135 NMR

¹⁹F NMR

Compound 35

Compound 36

4-Amino-3-fluorophenol (37)

¹H NMR

,OH

 H_2N

DEPT 135 NMR

¹⁹F NMR

Compound 38a

¹H NMR

¹⁹F NMR

Compound 38b

¹H NMR

Compound 39

¹H NMR

DEPT 135 NMR

¹⁹F NMR

Compound 40

¹H NMR

COSY NMR

135

¹⁹F NMR

Compound 4a

¹H NMR

¹⁹F NMR

Compound 5a

¹H NMR

¹⁹F NMR

Key HMBC correlations observed for the final compounds and selected synthetic intermediates.

HPLC Chromatograms

Compound 1a

Chimie Organique et Interfaces (CORINT)

				Chromat	togram and	Results			
C	al information								
Serue	ence Name:	15	2018-03-23						
Instru	ment		U3000						
Logici	lel used:		Chromeleon						
Colum	nn used:		CHIRALPAK IC-3	DAICEL	CHIRALPAK IC	DAICEL			
Inject	tion Details								
Injecti	on Name:		MW 49-1-IC3-2018	-03-23-75-25-0,8n	nLmin-40min	Run Time:	40,0	00 min	
Instru	ment Method:		Madani-IC3-75-25	-0,8mLmin-40min	1	Injection Volume:	5,0	00 µL	
Injecti	Ion Date/Time:		23/mars/18 11:33			Channel:	UV_VIS_1	-	
						Wavelength:	25	54 nm	
Instru	ument Method	Details							
Instru	ment Method:		Madani-IC3-75-25	-0,8mLmin-40min	1				
%A	Isopropanol		25	%					
%B	Hexane		/5	%		Temperature du tour:	20	,0 °C	
Chron	Debit.		0,000	mL/min		Pression.		or pars	
Chro	matogram	0 #4 Emonu	ally interacted?	B-0.07 A-0. A-10	0 0040 00 00 75	05 0 Beel min 40min		THE CHE A MARA	054.000
-400	00	o ae (manu	ally integrated	MIAA 49-1-10	-3-2010-03-23-75	-25-0,6mLmm-40mm		UV_VIS_1 WVL	294 mm
1	3		4 - 1	0.697					
350	nol loo								
1	~								
			1						
300	⁰⁰								
1	1								
250	207		1						
5	3								
E. 200	Enc								
8	~ <u>1</u>								
UB0									
8 150	201								
Υp	1		11						
100	10-								
1	1								
50	n-B		11						
- ~~	~ <u>]</u>		11						
1		11.4.242	0.00503		5.197	0.0			
1	에	11 14	a						
	1								
-50				 					
	0,0	5,0	10,0	15,0	20,0	25,0	30,0	35,0	40,0
					Time [min]			_	
Peak	Results								
No.	Peak Name		Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)		
			min	min					
1			4,142	0,230	4,58	1,14	1790		
2			5,865	0,213	1,38	n.a.	4181		
3			6,563	0,383	6,30	n.a.	1630		
4			10,697	0,392	6,36	1,57	4123		
5			19,673	1,273	n.a.	1,85	1322		

Integr	ation Results					
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height
		min	mAU*min	mAU	%	%
1		4,142	2,447	10,582	0,14	0,29
2		5,865	2,215	9,709	0,13	0,26
3		6,563	4,112	9,086	0,24	0,25
4		10,697	1713,886	3650,238	99,00	99,04
5		19,673	8,601	5,860	0,50	0,16
Total:			1731,261	3685,475	100,00	100,00

Compound 1b

General informations Sequence Name: 2018-03-30 Instrument: U3000 Logiel used: Chromeleon Column used: CHRALPAK IC3 DAICEL CHIRALPAK IC DAICEL Injection Details Madani-LC3-So-50-0,5mLmin-90min Pinetion Volume: 90,00 min Injection Date/Time: 30/mars/18 17:29 Channel: UV_VIS_1 Instrument Method: Madani-IC3-So-50-0,5mLmin-90min Z54 nm Instrument Method: Instrument Method: Madani-IC3-So-50-0,5mLmin-90min S4 So 0 % Sequength: 20,0 °C Débit 0,500 mL/min Pression: 95 bars S5 bars Chromatogram UV_VIS_1 WVL254 nn UV_VIS_1 WVL254 nn 100 0 % Sequence du four: 20,0 °C 0 0 % Température du four: 20,0 °C 0 0.500 mL/min Pression: 95 bars Chromatogram 100 0 0 0 0 0 0 0 0 0 0 0 <th></th> <th>Chromatogram ai</th> <th>nd Results</th> <th></th>		Chromatogram ai	nd Results	
Sequence Name: 2018/03-30 Instrument: U3000 Copiciel used: Chromeleon Column used: CHRALPAK IC 3 DAICEL CHIRALPAK IC DAICEL Injection Datelis Injection Name: 90,00 min Injection Name: MW 91-A12-IC3-2018-03-30-50-0,5mLmin-90min Run Time: 90,00 min Injection Name: MW 91-A12-IC3-2018-03-30-50-0,5mLmin-90min Run Time: 90,00 min Injection Date/Time: 30/mars/18 17:29 Charmel: UV_VIS_1 Instrument Method Date/Time: 30/mars/18 17:29 Charmel: UV_VIS_1 Instrument Method Details Instrument Method: Madani-IC3-50-50-0, SmLmin-90min 54 Issurpropanol 50 % Température du four: 20,0 °C Débit 0,500 mL/min Pression: 95 bars Chromatogram UV_VIS_1 WVL:254 nm UV_VIS_1 WVL:254 nm 100	General informations			
Instrument U3000 Lopiciel used: Chromeleon Column used: CHRALPAK IC-3 DAICEL CHIRALPAK IC DAICEL Injection Datails Mv 91-A12-IC3-2018-03-30-50-0.5mLmin-90min Run Time: 90,00 min Instrument Method: Madani-IC3-50-50-0.5mLmin-90min Run Time: 90,00 min Injection Date/Time: 30/mars/18 17:29 Channel: UV_VIS_1 Instrument Method: Madani-IC3-50-50-0.5mLmin-90min Rijection Function 10,00 µL Instrument Method Details 254 nm 254 nm Instrument Method Madani-IC3-50-50-0.5mLmin-90min 50 % 7 Sk4 Isopropanol 50 % 7 80 55 bars Chromatogram 0.500 mL/min 90 ml/min Pression: 95 bars Chromatogram UV_VIS_1 WVL254 mm UV_VIS_1 WVL254 mm UV_VIS_1 WVL254 mm 100	Sequence Name:	2018-03-30		
Logiel used: Chromeleon Column used: CHIRALPAK IC 3 DAICEL CHIRALPAK IC DAICEL Injection Details Injection Name: MV 91-A12-IC3-2018-03-30-50-0,5mLmin-90min Run Time: 90,00 min Instrument Method: Madani-IC3-50-0,5mLmin-90min Injection Volume: 10,00 µL Instrument Method: Madani-IC3-50-0,5mLmin-90min Stat Isopropanol 50 % Stat Isopropanol 50 % Stat Isopropanol 50 % Stat Isopropanol 50 % Stat Isopropanol 50 % Chromatogram 140 100 100 100 100 100 100 100	Instrument:	U3000		
Column used: CHIRALPAK IC3 DAICEL CHIRALPAK ICDAICEL Injection Name: MW 91-A124C3-2018-03-30-50-50-0,5mLmin-90min Run Time: 90,00 min Instrument Method: Madani-IC3-50-50-0,5mLmin-90min Injection Volume: 10,00 µL Injection Date/Time: 30/mars/18 17:29 Channet UV_VIS_1 Instrument Method: Madani-IC3-50-50-0,5mLmin-90min Kanani-IC3-50-50-0,5mLmin-90min Schameter Instrument Method Madani-IC3-50-50-0,5mLmin-90min Schameter 20,0 °C Jostonardi Method: Madani-IC3-50-50-0,5mLmin-90min Schameter 20,0 °C Schameter 50 % Température du four: 20,0 °C Débit 0,500 mL/min Pression: 95 bars Chromatogram UV_VIS_1 WVL:254 nn UV_VIS_1 WVL:254 nn 100- 1	Logiciel used:	Chromeleon		
Injection Details UV 91-A12-IC3-2018-03-30-50-50-0,5mLmin-90min Run Time: 90,00 min Instrument Method: Madani-IC3-50-50-0,5mLmin-90min Injection Valume: 10,00 µL Injection Date/Time: 30/mars/18 17:29 Channel: UV_VIS_1 Instrument Method Madani-IC3-50-50-0,5mLmin-90min Same 254 nm Instrument Method Details Instrument Method: Madani-IC3-50-50-0,5mLmin-90min Same Sk4 Isopropanol 50 % Température du four: 20,0 °C Débit: 0,500 mL/min Pression: 95 bars Chromatogram UV_VIS_1 WVL.254 nm UV_VIS_1 WVL.254 nm 100 10 10-17.307 10-17.307	Column used:	CHIRALPAK IC-3 DAICEL CHIRALPAK	IC DAICEL	
Injection Name: MW 91-A12-IC3-2018-03-30-50-0,5mLmin-90min Imain Faur Time: 90,00 min Instrument Method: Madani-IC3-50-0,5mLmin-90min Injection Volume: 10,00 µL Injection Date/Time: 30/mars/18 17:29 Channel: UV_VIS_1 Instrument Method Details Instrument Method: Madani-IC3-50-0,5mLmin-90min S4 Isopropanol 50 % S4 Isopropanol UV_VIS_1 WVL254 mm 140 Imaulty integrated] MW 91-A12-IC3-2018-03-50-50-0.5mLmin-90min UV_VIS_1 WVL254 mm 120 Imaulty integrated] Imaulty integrated] Imaulty integrated] Imaulty integrated] 120 Imaulty integrated Imaulty integrated Imaulty integrated Imaulty integrated <td>Injection Details</td> <td></td> <td></td> <td></td>	Injection Details			
Instrument Method: Madani-IC3-S0-S0-0, smLmin-S0min ingection Volume: 10,00 µL Injection Date/Time: 30/mars/18 17:29 Channel: UV_VIS_1 Instrument Method Details 254 nm Instrument Method: Madani-IC3-S0-S0-0, SmLmin-90min 30/mars/18 17:29 %A Isopropanol 50 % Température du four: 20,0 °C Débit: 0,500 mL/min Pression: 95 bars Chromatogram UV_VIS_1 WVL254 nm 140 12018-03-30 #8 [manually integrated] MW 91-A12-IC3-2018-03-30-50-0.5mLmin-90min UV_VIS_1 WVL254 nm 120 0 -17,307 -17,307 -17,307 120 -1,2-8,570 -17,307 -17,307	Injection Name:	MW 91-A12-IC3-2018-03-30-50-50-0,5mLmin-90n	nin Run Time:	90,00 min
Injection Date Time: Jumarsh's 17:29 Channel: UU_VIS_1 Wavelength: 254 nm Instrument Method Details Instrument Method: Madani-IC3:50:0,0,5mLmin:90min \$4 Isopropanol 50 % \$6B Hexane 50 % Chromatogram Statistic 35 bars 140 2016-03-30 #3 (manually integrated) MW 91-A12-IC3-2018-03-30-50-50-0 5mLmin:90mn UV_VIS_1 WVL.254 nm 120 100 100 100 100 100 120 100 100 100 100 120 100 100 100 100 120 100 100 100 100 120 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Instrument Method:	Madani-IC3-50-50-0,5mLmin-90min	Injection Volume:	10,00 µL
Instrument Method Details Z34 nm Instrument Method: Madani-IC3-50-50-0,5mLmin-90min 50 % S46 Isopropanol 50 % Température du four: 20,0 °C Débit: 0,500 mU/min Pression: 95 bars Chromatogram 140 140 140 140 120 0 (3 - 17.307) 17.307 17.307	Injection Date/Time:	30/mars/18 17:29	Channel: Wouslength:	UV_VIS_1
Instrument Method: Madani-IC3-50-0_5mLmin-90min %A Isopropanol 50 % %B Hexane 50 % Débit: 0,500 mL/min Pression: 95 bars Chromatogram UV_VIS_1 WVL:254 nm 140 2016-03-30 @8 [manually integrated] MW 91-A12-IC3-2018-03-30-50-50-0 5mLmin-90min 120 13-17,307 13-17,307 100 13-17,307 13-17,307	Instrument Method Details		wavelengul.	204 nm
%A Isopropanol 50 % Température du four: 20,0 °C Débit: 0,500 mL/min Pression: 35 bars Chromatogram UV_VIS_1 WVL.254 nn 140 2018-03-30 08 (manually integrated) MW 91-A12-IC3-2018-03-30-50-50-0.5mLmin-80mm UV_VIS_1 WVL.254 nn 100	Instrument Method:	Madani-IC3-50-50-0 5ml min-90min		
%B Hexane 50 % Température du four: 20,0 °C Débit: 0,500 mL/min Pression: 95 bars Chromatogram UV_vis_1 WVL:254 nm 140 2018-03-30 #8 [manually integrated] MW 91-A12-IC3-2018-03-30-50-50-0.5mLmin-90min UV_vis_1 WVL:254 nm 120 0	%A Isopropanol	50 %		
Débit: 0,500 mL/min Pression: 95 bars Chromatogram Image: state of the st	%B Hexane	50 %	Température du four:	20,0 °C
Chromatogram WW 91-A12-IC3-2018-03-30-50-50-0.5mLmin-90min UV_VIS_1 WVL:254 mm 140 2018-03-30 @8 [manually integrated] MW 91-A12-IC3-2018-03-30-50-50-0.5mLmin-90min UV_VIS_1 WVL:254 mm 120	Débit:	0,500 mL/min	Pression:	95 bars
140 2018-03-30 @8 [manually integrated] MW 91-A12-IC3-2018-03-30-50-50-0.5mLmin-90min UV_VIS_1 WVL:254 nm 120- 120- 13-17,397 100- 13-17,397 100- 100- 13-17,397 100- 100- 100- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- 12-10- 100- 12-10- 12-10- <	Chromatogram			
120- 100-	146 🖥 2018-03-30 #8 [manua	Ily integrated MW 91-A12-IC3-2018-03-3	0-50-50-0,5mLmin-90min	UV_VIS_1 WVL:254 nm
	120- 100-	20,0 30,0 40,0	50,0 60,0	
Time [min]		Time [m	in]	

FCak P											
No.	Peak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)					
		min	min	. ,							
1		6,283	0,124	4,47	2,41	14134					
2		8,570	0,479	1,74	1,22	1770					
3		17,397	5,506	n.a.	2,13	55					

Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height			
		min	mAU*min	mAU	%	%			
1		6,283	1,314	3,196	0,15	2,24			
2		8,570	4,220	8,956	0,50	6,27			
3		17,397	842,274	130,701	99,35	91,49			
Total:			847,808	142,854	100.00	100.00			

Compound 2a

_									
				Chromat	togram and	Results			
G	oner	al informations							
Se	aue	nce Name:	2018-04-10						
In	strun	nent:	U3000						
Lo	ogiciel used: Chromeleon								
C	ChiralPak IC-3 DAICEL CHIRALPAK ICDAICEL								
In	jecti	ion Details							
Inj	jectio	n Name:	MW 87-12-IC3-201	18-04-10-50-50-1n	nLmin-120min	Run Time:	120,00	min	
In	strun	nent Method:	Madani-IC3-50-50	-1mLmin-120min		Injection Volume:	10,00	μL	
Inj	jectio	on Date/Time:	10/avr./18 21:40			Channel:	UV_VIS_1		
Ŀ						Wavelength:	254	nm	
In	stru	ment Method Details	Madani IC2 50 50	1ml min 120min					
96	a strum	Isopropapol	madani-iC-50-50 50	%					
96	ē	Heyane	50	96		Température du four:	20.0	°C	
1~		Débit:	1.000	mL/min		Pression:	20,0	bars	
a	nron	natogram	1,000			1100001	200	Cur S	
		2018-04-10 #4 Imanu	ally integrated	MW 87-12-	C3-2018-04-10-5	0-50-1mLmin-120min	1	JV_VIS_1 WVL:254 nm	
	160		44 55 929						
		1	11 - 20,757						
	140	o-	1						
		1	6						
	120	0_							
		· -	11						
	100		11						
	100	°-	11						
AU		1							
E	. 80	0-	11						
DOB		-	11						
ę	60	o-1	11						
psq		-							
⊲	404	.1	11						
	40	~ -	11						
		1							
	20	9-	11						
		9 - 9,492 13	183						
	201								
	-20	0 10	20 30	40 5	0 60	70 80	90 100	110 120	
		v :v	40 VV		Time [min]	1		r 119 160	
Pe	eak F	Results							
N	D.	Peak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)		
			min	min					
1			3,332	0,320	1,92	0,95	599	I	
2			4,303	0,278	n.a.	n.a.	1327		
3			4,658	n.a.	n.a.	n.a.	n.a.		
4			5,278	0,113	2,02	1,14	12019		
5			5,820	0,202	2,19	1,71	4581		
6			6,677	0,259	1,49	n.a.	3669		
7			7,220	0,170	1,14	1,06	9937		
8			8,248	0,895	1,19	n.a.	471		
8			9,442	0,286	3,31	1,64	6055		
10			13,183	1,047	3,46	1,29	8/8		

Integr	ration Results					
No.	No. Peak Name Retention Time		Area	Height	Relative Area	Relative Height
		min	mAU*min	mAU	%	%
1		3,332	1,679	5,180	0,06	0,32
2		4,303	1,764	6,448	0,07	0,40
3		4,658	0,198	0,633	0,01	0,04
4		5,278	0,072	0,622	0,00	0,04
5		5,820	1,123	4,334	0,04	0,27
6		6,677	0,245	1,005	0,01	0,06
7		7,220	0,208	1,174	0,01	0,07
8		8,248	8,427	9,636	0,32	0,60
9		9,442	20,026	58,540	0,76	3,62
10		13,183	47,885	36,693	1,82	2,27
11 20,757		2549,412	1493,796	96,90	92,32	
Total:			2631,039	1618,060	100,00	100,00

Compound 3a

1.

_

	Chromatogram and Results							
General i	informations							
Sequence	Name:	2018-04-10						
Instrumen	t:	U3000						
Logiciel us	sed:	Chromeleon						
Column us	sed:	CHIRALPAK IC-3	DAICEL					
Injection	Details				<u> </u>	400.00		
Injection N	Vame: Mothod:	MW 94-7-IC 3-2018	-04-10-50-50-1mL	.min-120min	Run Time: Injection Volume:	120,00	min	
Injection F	late/Time:	Madani-IC3-30-30- 10/avr /18 17-39			Channel:	10,00	μι	
	Jato Timo.	10/04/12/10 11:55			Wavelength:	254	nm	
Instrume	nt Method Details	_			J			
Instrumen	t Method:	Madani-IC3-50-50-	1mLmin-120min					
%A Iso	opropanol	50	%					
%B He	exane	50	%		Température du four:	20,0	°C	
De	PDIT:	1,000	mL/min		Pression:	199	bars	
Chromate	ogram	llu faite susta d'I	BRALOA 7 IO	2 2040 04 40 50	50 dayl aris 400 min	1	N/ 1/10 11/00/0-054 pm	
300] 2010-04-10 #2 (manua	ily integrated]	WW 94-7-IC	/3-2016-04-10-50-	SU-TIMEMIN-TZUMIN	(JV_VIS_1 WVL.234 IIII	
	8	3 - 19,378						
	Λ							
250-								
	1							
200								
200-	11							
L_ 1								
¥ 150-								
8								
- au								
bg 100-								
Ϋ́Ρ								
50-								
1								
1 1.	5 - 4,043							
1 0-14	110000000000000000000000000000000000000							
-50-1	10 2	0 30	40 50	60	70 80	90 100	110 120	
	10 2	0 50	40 50	Time [min]	70 00	50 100	110 120	
Peak Res	ults						I	
No. Pe	ak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)		
		min	min	l í	, , , ,			
1		1,942	0,413	1,59	0,99	123	1	
2		2,818	0,239	n.a.	n.a.	770		
3		3,112	n.a.	n.a.	n.a.	n.a.		
4		3,360	0,279	1,07	n.a.	805		
6		4,043	0,475	2,31	1,15	401		
7		9 148	0,801	5.55	1,47	723		
8		19,378	1,375	n.a.	1.41	1100		

Integr	ation Results					-
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height
		min	mAU*min	mAU	%	%
1		1,942	0,424	1,055	0,10	0,36
2		2,818	0,228	0,988	0,05	0,33
3		3,112	0,080	0,705	0,02	0,24
4		3,360	0,392	1,447	0,09	0,49
5		4,043	4,479	11,445	1,02	3,86
6		5,252	0,163	1,092	0,04	0,37
7		9,148	0,890	1,125	0,20	0,38
8		19,378	433,349	278,827	98,49	93,98
Total:			440,005	296,684	100,00	100,00

Compound 2aCl

	Chroma	togram and	Results			
General informations	_					
Sequence Name: Instrument: Logiciel used: Column used:	2018-04-26 U3000 Chromeleon CHIRALPAK IC-3 DAICEL	CHIRALPAK ICI	DAICEL			
Injection Details						
Injection Name: Instrument Method: Injection Date/Time:	MW 187-45-IC3-2018-04-26-50-50-1 Madani-IC3-50-50-1mLmin-120min 26/avr./18 18:42	ImLmin-120min	Run Time: Injection Volume: Channel: Wavelength:	UV_VIS_1	120,00 min 10,00 μL 254 nm	
Instrument Method Details						
Instrument Method: %A Isopropanol %B Hexane Débit:	Madani-IC3-50-50-1mLmin-120min 50 % 50 % 1 000 ml /min		Température du four: Pression:		20,0 °C 199 bars	
Chromatogram					100,0010	
160 140 140 120 100 100 100 100 100 100 10	15 - 19.508	IC3-2018-04-26-50	-50-1mLmin-120min		VVIS	<u>1 WVL:254 nm</u>
-20-10 20-100-10 20-10-10-100-100-100-100-100-100-100-100	20 30 40 50	0 60 Time [min]	70 80	90	100	110 120

Peak I	Results					
No.	Peak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)
		min	min			
1		4,403	0,285	5,88	0,79	1324
2		9,023	0,643	n.a.	n.a.	1091
3		9,643	n.a.	n.a.	n.a.	n.a.
4		12,260	0,868	3,61	1,38	1105
5		19 508	1 500	na l	145	936

Integr	ation Results	_				
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height
		min	mAU*min	mAU	%	%
1		4,403	1,734	6,341	0,61	2,69
2		9,023	1,429	2,180	0,50	0,92
3		9,643	0,447	1,183	0,16	0,50
4		12,260	143,018	144,948	50,13	61,39
5		19,508	138,693	81,476	48,61	34,50
Total:			285,321	236,128	100,00	100,00

Compound 2c

	Chromatogram and Results							
Gene Seque Instrui Logici Colun	ral informations ence Name: ment: iel used: nn used:	2018-04-10 U3000 Chromeleon CHIRALPAK IC-3	DAICEL	CHIRALPAK IC				
Injecti Injecti Instrui Injecti	tion Details ion Name: ment Method: ion Date/Time:	MW 113AR-IC3-20 Madani-IC3-50-50- 11/avr./18 01:42	18-04-10-50-50-1 1mLmin-120min	mLmin-120min	Run Time: Injection Volume: Channel: Wavelength:	120,00 10,00 UV_VIS_1 254) min) µL 4 nm	
Instru Instru %A %B	ument Method Details ment Method: Isopropanol Hexane Débit:	Madani-IC3-50-50- 50 50 1,000	1mLmin-120min % % mL/min		Température du four: Pression:	20,0 201)°C 1 bars	
Chron	matogram 🚬 💆 2018-04-10 #6 [manu	ually integrated]	MW 113AR	-IC3-2018-04-10-	50-50-1mLmin-120min		UV_VIS_1 WVL:254 nm	
40. 17, 15, 12, 10, 10, 7, 5, 2, 0,	5 0 5 0 5 0 5 0 5 0 5 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0 5 0		18	47,380				
-2,	0 10	20 30	40 5	0 60 Time (min)	70 80	90 10	0 110 120	
Deak	Peculte			nme (minj			1	
No.	Peak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)	1	
1 2 3 4 5 6 7 8		2,853 3,428 4,098 4,800 8,650 11,047 39,557 47,380	0,180 0,297 0,522 0,126 0,245 0,298 2,296 2,679	1,42 0,96 1,28 12,23 5,21 12,97 1,86 n.a.	n.a. n.a. 1,16 n.a. 1,17 1,31 1,49 1,72	1386 736 341 8040 6887 7617 1645 1733		
				-			-	
Integ No. 1 2 3 4 5 6 7	Peak Name	Retention Time min 2,853 3,428 4,098 4,800 8,650 11,047 39,657	Area mAU*min 0,035 0,157 4,266 0,034 0,029 0,016 0,483	Height mAU 0,160 0,504 8,463 0,248 0,105 0,045 0,045	Relative Area % 0,05 0,24 6,53 0,05 0,04 0,02 0,74	Relative Height % 0,56 1,77 29,82 0,87 0,37 0,16 0,66	-	
8 Total:		47,380	60,344 65,365	18,672 28,384	92,32 100,00	65,78 100,00	4	

Compound 3c

	Chromatogram and Results							
Gene	ral informations							
Seque	nce Name:	2018-04-03						
Instrui	ment:	U3000						
Logici	el used:	Chromeleon						
Colum	n used:	CHIRALPAK IC-3	DAICEL	CHIRALPAK IC	DAICEL			
Inject	ection Details							
Iniecti	on Name:	MW 118-9-IC3-201	8-04-03-50-50-1m	Lmin-120min	Run Time:	120.00	min	
Instrui	ment Method:	Madani-IC3-50-50	-1mLmin-120min		Injection Volume:	10.00	uL	
Injecti	on Date/Time:	03/avr./18 15:27			Channel:	UV VIS 1	-	
Ľ					Wavelength:	254	nm	
Instru	ment Method Details							
Instrui	ment Method:	Madani-IC3-50-50	-1mLmin-120min					
%A	Isopropanol	50	%					
%B	Hexane	50	%		Température du four:	20,0	°C	
	Débit:	1,000	mL/min		Pression:	200	bars	
Chron	natogram							
	2018-04-03 #8 [manua	ally integrated	MW 118-9-10	03-2018-04-03-5	0-50-1mLmin-120min		JV_VIS_1 WVL:254 nm	
160]	,,						
	-1							
140	-1				5 - 70,347			
	1				Λ			
100	1				1			
120	1							
	1							
100)-							
5	1							
A R	.41							
8 00	(T)							
ano	1							
8 60								
Abs	1							
1	.1							
	(J)							
	1							
20)-							
	1							
1 0		1 - 22,528,640	3 - 38,272 4 - 45,8	887				
		1 1	1 1					
	1							
-20	,, , , , , , , , , , , , , , , , , , ,		· . · · · .		· · <u>·</u> · · · · · · · · · · · · · · · ·			
	0 10 2	0 30	40 50	60 Time (mini	70 80	90 100	110 120	
L	Lime [min]							
Peak	Results			-		-		
No.	Peak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)		
		min	min					
1		25,503	1,300	0,99	n.a.	2132		
2		28,640	2,451	2,56	n.a.	756		
3		38,272	1,994	2,63	1,30	2041		
4		45,887	1,419	6,02	0,99	5793		

5		70,347	3,373	n.a.	1,70	2410					
Integ	Integration Results										
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height					
		min	mAU*min	mAU	%	%					
1		25,503	0,101	0,061	0,02	0,04					
2		28,640	0,136	0,064	0,02	0,05					
3		38,272	0,213	0,105	0,04	0,08					
4		45,887	0,085	0,036	0,02	0,03					
5		70,347	546,934	138,383	99,90	99,81					
Total:			547,469	138,649	100,00	100,00					

Compound 4a

	Chimie Organique et Interfaces (CORIN						aces (CORINT)
			Chromat	togram and	Results		
Gener	ral informations						
Seque	nce Name:	2018-03-30					
Instrur	nent:	U3000					
Logicie	el used:	Chromeleon					
Colum	n used:	CHIRALPAK IC-3	DAICEL	CHIRALPAK IC	DAICEL		
Inject	ion Details						
Injectio	on Name:	MW 144-3P-IC3-2	018-03-30-75-25-0	,8mLmin-90min	Run Time:	90,0	0 min
Instrur	ment Method:	Madani-IC3-75-25	-0,8mLmin-90mir	1	Injection Volume:	10,0	0 µL
Injectio	on Date/Time:	30/mars/18 15:28			Channel:	UV_VIS_1	
					Wavelength:	25	4 nm
Instru	ment Method Details						
Instrur	nent Method:	Madani-IC3-75-25	-0,8mLmin-90mir	n			
%A	Isopropanol	25	%		Town fortune du form		
%B	Hexane Dóbit:	/5	%		Temperature du four:	20,	0°C
Charac		0,800	mL/min		P16551011.	°	o Dais
Chron	natogram		1817				
140	2018-03-30 #6 [manu	ally integrated]	WW 144-3P-I	C3-2018-03-30-7	5-25-0,8mLmin-90min		UV_VIS_1 WVL:254 nm
	1						
	-1	.5 00.0	50				
120		Δ - 22,0: Λ	50				
	-	Λ					
100	1						
100							
	1	11					
5 80							
Am		11					
8	-						
2 60	·						
dro	-1						
G ⊿∩		11					
	1						
20	-	1 \					
	2 - 5,738						
	4,257 3 - 10,7	7340 - 14,983					
0							
]						
20	.41						
-20	100	20.0	200	400	500 600	70.0	
	0,0 10,0	20,0	30,0	Time Imin1	50,0 60,0	70,0	50,0 90,0
Deelel	D						
No	Deak Name	Detention Time	Width (50%)	Desolution (ED)	Asymmetry (ED)	Platec (ED)	-
NO.	reak Name	Retention Time	widur (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)	
1		4 257	0.383	2.63	1.01	683	-
2		5 738	0,303	5.68	1.01	2297	
2		10,730	0,202	3.13	1,40	1121	
4		14 983	0,754	3,13	1.19	1722	
5		22,650	1 /16	0,00	1,15	1/18	
5		22,000	1,410	n.a.	1,00	1410	-
Integr	ation Results	Detertion Tim	4	11-2-1-1	Deletive to a	Deletion Listen	
INU.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height
		min	mAU*min	mAU	%	%
1		4,257	1,006	2,668	0,49	1,94
2		5,738	3,798	12,840	1,87	9,32
3		10,730	1,865	2,103	0,92	1,53
4		14,983	1,480	1,659	0,73	1,20
5		22,650	195,445	118,422	96,00	86,01
Total:			203,594	137,692	100,00	100,00

Compound 5a

			Chroma	togram and	Results				
General informati	ons								
Sequence Name:	20	18-04-10							
Instrument:	U	3000							
Logiciel used:	CI	hromeleon			-				
Column used:	CI	HIRALPAK IC-3	DAICEL	CHIRALPAK IC	DAICEL				
Injection Details		W 127-2-IC2-201	04.10.75.25.0	9ml min-120min	Dun Time:		90.00 mi	n	
Instrument Method:	M	adani-IC3-75-25-	0.8ml min-90mi	5111 <u>11111-12</u> 011111	Injection Volume		10.00 ul		
Injection Date/Time:	11	11/avr./18 05:13			Channel:	UV VIS 1			
·					Wavelength:		254 nn	n	
Instrument Metho	od Details								
Instrument Method:	Ma	adani-IC3-75-25-	0,8mLmin-90mi	n					
%A Isopropanol		25	%		Town factors do for				
%B Hexane		0 900	% ml/min		Pression:		20,0 °C	re	
Chromatogram		0,000			F16331011.		00 00	15	
2018-04	-10 #8 [manually	integrated]	MW 137-3-I	C3-2018-04-10-75	-25-0 8ml min-120min		UV	VIS 1 WVL:2	254 nm
900 J	11	2 - 15,487						_	
750-									
625-									
10 500-									
soupauce 375									
[₽] 250-									
125-									
	499390 1992 10	30878	13 - 28,830						
-100-1	10,0	20,0	30,0	40,0 Time [min]	50,0 60,0	70,0	· · ·	80,0	90,0
Peak Results									
No. Peak Name	F	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)		

No.	Peak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)
		min	min			
1		4,205	0,338	2,25	n.a.	859
2		5,213	0,191	1,81	n.a.	4132
3		5,825	0,207	1,78	1,16	4377
4		6,665	0,351	0,93	n.a.	1997
5		7,132	0,242	1,37	n.a.	4804
6		7,835	0,366	0,98	n.a.	2541
7		8,637	0,600	1,32	n.a.	1150
8		9,565	0,233	1,38	n.a.	9298
9		10,528	0,593	1,12	n.a.	1749
10		12,008	0,970	n.a.	n.a.	849
11		13,178	n.a.	n.a.	n.a.	n.a.
12		15,487	0,828	6,07	1,48	1938
13		28.830	1,764	n.a.	1.41	1480

Integ	ration Results					
No.	. Peak Name Retention Time		Area	Height	Relative Area	Relative Height
		min	mAU*min	mAU	%	%
1		4,205	0,406	0,997	0,05	0,11
2		5,213	1,478	6,533	0,18	0,74
3		5,825	2,164	9,621	0,26	1,10
4		6,665	0,139	0,370	0,02	0,04
5		7,132	0,034	0,166	0,00	0,02
6		7,835	0,258	0,656	0,03	0,07
7		8,637	0,475	0,696	0,06	0,08
8		9,565	0,088	0,312	0,01	0,04
9		10,528	0,400	0,585	0,05	0,07
10		12,008	0,358	0,358	0,04	0,04
11		13,178	0,078	0,123	0,01	0,01
12		15,487	821,094	856,454	99,09	97,57
13		28,830	1,688	0,872	0,20	0,10
Total	•		828 662	877 743	100 00	100 00

Titration curves for IC_{50} determination

Compound 1a

Compound 2aCl

Figure 11.

Compound 3a

Compound 4a

Figure 13.

Compound 5a

Figure 14.

Figure 15. Cell viability (% of control) was measured using the MTT test after exposure of the cells to compound 1a at the concentrations indicated for 48h.

Figure 16. Cell viability (% of control) was measured using the MTT test after exposure of the cells to compound 1b at the concentrations indicated for 48h.

Figure 17. Cell viability (% of control) was measured using the MTT test after exposure of the cells to compound 3a at the concentrations indicated for 48h.

Figure 18. Cell viability (% of control) was measured using the MTT test after exposure of the cells to compound 2aCl at the concentrations indicated for 48h.

Figure 19. Cell viability (% of control) was measured using the MTT test after exposure of the cells to compound 3c at the concentrations indicated for 48h.

Figure 20. Cell viability (% of control) was measured using the MTT test after exposure of the cells to compound 4a at the concentrations indicated for 48h.

References

- 1. P. Srinivas, S. Prabhakar, F. Chevallier, E. Nassar, W. Erb, V. Dorcet, V. Jouikov, P. Radha Krishna and F. Mongin, *New J. Chem.*, 2016, **40**, 9441-9447.
- 2. G. Sheldrick, Acta Crystallogr. Sect. A, 2015, **71**, 3-8.
- 3. G. Sheldrick, *Acta Crystallogr. C*, 2015, **71**, 3-8.
- 4. L.-M. Wang, B.-Q. Du, D.-Z. Zuo, M.-K. Cheng, M. Zhao, S.-J. Zhao, X. Zhai and P. Gong, *Res. Chem. Intermed.*, 2016, **42**, 3209-3218.
- 5. M. Sonoshita, A. P. Scopton, P. M. U. Ung, M. A. Murray, L. Silber, A. Y. Maldonado, A. Real, A. Schlessinger, R. L. Cagan and A. C. Dar, *Nature Chemical Biology*, 2018, **14**, 291-298.
- 6. X. Wang, Y. Xu, Y. Zhou, Y. Zhang and J. Wang, *Synthesis*, 2014, **46**, 2143-2148.
- 7. H. Pang, F. Gallou, H. Sohn, J. Camacho-Bunquin, M. Delferro and B. H. Lipshutz, *Green Chemistry*, 2018, **20**, 130-135.
- 8. H. Liu, C. S. Tomooka, S. L. Xu, B. R. Yerxa, R. S. Sullivan, Y. Xiong and H. W. Moore, *Organic Syntheses*, 1999, **76**, 189.
- 9. Y. Wang, A. Rapakousiou, C. Latouche, J.-C. Daran, A. Singh, I. Ledoux-Rak, J. Ruiz, J.-Y. Saillard and D. Astruc, *Chem. Commun.*, 2013, **49**, 5862-5864.
- 10. C. L. Beck, S. A. Berg and A. H. Winter, *Org. Biomol. Chem*, 2013, **11**, 5827-5835.
- 11. M. S. Inkpen, S. Du, M. Hildebrand, A. J. P. White, N. M. Harrison, T. Albrecht and N. J. Long, *Organometallics*, 2015, **34**, 5461-5469.
- 12. B. R. Stockwell, S. J. Dixon and R. Skouta **2015**.
- 13. A. Kumar, N. Kumar, R. Sharma, G. Bhargava and D. Mahajan, *J. Org. Chem.*, 2019, **84**, 11323-11334.
- 14. H. Zegzouti, M. Zdanovskaia, K. Hsiao and S. A. Goueli, *ASSAY and Drug Development Technologies*, 2009, **7**, 560-572.