Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Monodisperse-porous cerium oxide microspheres as a new support with appreciable catalytic activity for a composite catalyst in benzyl alcohol oxidation

Kadriye Özlem Hamaloğlu¹, Rukiye Babacan Tosun², Serap Ulu¹, Hakan Kayı³, Cengiz Kavaklı⁴, Pınar Akkaş Kavaklı⁴, Çiğdem Kip¹, Ali Tuncel^{1,2,a}

¹Hacettepe University, Chemical Engineering Department, 06800, Beytepe, Ankara, Turkey
²Hacettepe University, Division of Nanotechnology, 06800, Beytepe, Ankara, Turkey
³Ankara University, Chemical Engineering Department, 06100, Beytepe, Ankara, Turkey
⁴Hacettepe University, Chemistry Department, 06800, Beytepe, Ankara, Turkey

1. Materials

Cerium (III) nitrate hexahydrate (Ce(NO₃)₂.6H₂O) and hexamethylenetetraamine (HMTA) were purchased from Sigma-Aldrich Chemical Co. (Milwaukee, WI, U.S.A.). For the derivatization of CeO₂ microspheres, 3-aminopropyltriethoxysilane (APTES), 3-glycidoxypropyltrimethoxysilane (GPTMS) and polyethylenimine (PEI) (Mw:) were obtained from Sigma-Aldrich. Polyvinyl alcohol (PVA), sodium borohydride (NaBH₄), concentrated sulphuric acid (H₂SO₄) and palladium (II) nitrate hydrate, used in the synthesis and immobilization of Pd NPs were obtained from Sigma Chemical Co. Benzyl alcohol (BzOH), the oxidation agent, tertiary-butylhydrogenperoxide (TBHP) and the solvent, diethyleneglycol dimethylether (DEGDME) were purchased from Sigma-Aldrich. Commercial cerium dioxide (c-CeO₂) microparticles as a reference support was also purchased from Sigma-Aldrich. All runs were performed using dDistilled-dieonized (DDI) water (Direct-Q 3 UV (Type 1), Millipore, USA) with a resistivity of 18 MΩ·cm.

2. Catalyst characterization

The size distribution and the surface morphology of catalysts were determined by scanning electron microscopy (SEM, QUANTA 400F Field Emission, USA). The pore size distribution and the specific surface areas of catalysts were determined by using the nitrogen adsorption/desorption method according to Brunauer–Emmett–Teller (BET) model (Quantachrome, Nova 2200E, UK). The means size and the size distribution of the Pd NPs were determined by transmission electron microscopy (TEM, JEM JEOL 2100F 200kV HRTEM, Japan). The crystal structures of catalysts were investigated with X-ray diffraction spectroscopy (XRD, Rigaku Ultima-IV, Japan). The surface atomic compositions of catalysts were determined by energy dispersive X-ray spectroscopy (JEOL JXA-8230 EPMA, Japan). Pd contents of all catalysts were determined by Inductively Coupled Plasma – Mass Spectrometer (ICP-MS, Thermofisher X series II, Thermo Fisher Scientific, USA).

3. Calculation of overall benzyl alcohol (BzOH) conversion, selectivity for benzaldehyde (BzCHO) and BzCHO formation yield

The equations used for the calculation of overall benzyl alcohol (BzOH) conversion, selectivity for benzaldehyde (BzCHO) and BzCHO formation yield are given below:

Overall BzOH conversion (%) = $\left(\frac{C_0 - C_{BZOH}}{C_0}\right) * 100$ Selectivity for BzCHO (%) = $\left(\frac{C_{BZCHO}}{C_0 - C_{BZOH}}\right) * 100$ BzCHO formation yield (%) = (Selectivity for BzCHO(%) * Overall BzOH conversion (%))/100

4. Characterization of the catalyst

Figure S1. The chemical route used for attachment of Pd nanoparticles (Pd NPs) onto the monodisperse-porous CeO₂ microspheres using PEI as the macromolecular cationic linker.

Figure S2. The SEM photographs of (A) Pd@APTES@SiO₂ microspheres. Magnification: (I) 2500X, (II) 25000X, (III) 45000X, (IV) 100000X. (B) Pd@APTES@c-CeO₂ microparticles. Magnification: (I) 650X, (II) 1900X, (III) 4500X.

Figure S3. FTIR-ATR spectra of (A) plain CeO₂ microspheres, (B) APTES@CeO₂ and (C) Pd@APTES@CeO₂ microspheres.

Figure S4. FTIR-ATR spectra of (A) PEI@CeO₂ and (B) Pd@PEI@CeO₂ microspheres.

Figure S5. Survey XPS spectra of (A) PEI@CeO₂, and (B) Pd@PEI@CeO₂ microspheres.

Figure S6. Core-level XPS spectra of O1s scan for (A) plain CeO₂, (B) APTES@CeO₂, (C) Pd@APTES@CeO₂, (D) PEI@CeO₂, and (E) Pd@PEI@CeO₂ microspheres.

Figure S7. H2-TPR spectrum of Pd@APTES@CeO2 microspheres.

Figure S8. Core-level XPS spectra of Ce3d scan for (A) PEI@CeO₂ and (B) Pd@PEI@CeO₂ microspheres.

5. Kinetic behaviour of synthesized catalysts

Figure S9. The variation of **(A)** overall BzOH conversion and **(B)** BzCHO formation yield with the time in the presence of Pd@APTES@CeO₂, Pd@PEI@CeO₂, Pd@APTES@SiO₂ microspheres and Pd@APTES@c-CeO₂ microparticles as the catalysts. The blank run performed without using any catalyst was also included in the plots.

6. Quantum Mechanical Protocol

The approach followed in quantum mechanical calculations is summarized below. Some simplifications were made during the modeling of system components. A CeO₂ slab which represents a small part of CeO₂ microspheres was defined. Lattice parameters are used as a=b=c=3.866 Å and $\alpha=\beta=\gamma=60^{\circ}$ with P1 symmetry space group as provided by the VASP calculation results in the literature.¹ By using these parameters a Ce₅₀O₉₀ surface was constructed. A couple of unsaturated oxygen atoms were saturated by the addition of hydrogen atoms for making the complete surface neutral. The structure of Pd₅₅ NP is taken from the literature and used in its neutral form.² Both CeO₂ surface and Pd NP were fully optimized without any constraints using PM7 method, before preparing the reaction system. In the next step, the optimized structures of Pd NP and CeO₂ surface were linked to APTES. The obtained Pd@APTES@CeO₂ system was fully optimized with PM7 method. In the last step, isolated TBHP and BzOH structures were fully optimized by using DFT at the B3LYP/6-311+G(d,p) level of theory, and then their DFT optimized structures were implemented into the PM7 calculations to separately investigate their interactions with Pd@APTES@CeO₂ system and Pd NP. Both reaction systems were fully optimized as given below:

 $\Delta E_{bind_1} = E(Pd@APTES@CeO_2 + TBHP + BzOH)$

 $- [E(Pd@APTES@CeO_2) + E(TBHP) + E(BzOH)]$

 $\Delta E_{bind_2} = E(Pd + TBHP + BzOH) - [E(Pd) + E(TBHP) + E(BzOH)]$

In these equations, $E(Pd@APTES@CeO_2), E(Pd), E(TBHP), E(BzOH)$ indicate the PM7 calculated total energy of the isolated objects, while $E(Pd@APTES@CeO_2 + TBHP + BzOH)$ and E(Pd + TBHP + BzOH) indicate the total energy of the interacting assembly of the objects. Both interacting assemblies are given in **Figure S10 of the Supplementary Information**.

Figure S10. Interactions among (A) Pd@APTES@CeO2, TBHP and BzOH. (B) Pd NP,

TBHP and BzOH.

References

- A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Materials, 2013, 1, 011002.
- S. Kohaut, T. Rapps, K. Fink, D. Schooss, J. Phys. Chem. A, 2013, 123, 10940-10946.