## Catalytic lignin valorization over HSZ-supported CuNiAl-based catalysts with microwave heating

Peng Liu ac, Changzhou Chen ac, Minghao Zhou b\*, Haihong Xia ac, Jing Li ac,

Brajendra K Sharma<sup>d</sup>, Jianchun Jiang<sup>ac</sup>

- a. Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. on Forest Chemical Engineering, SFA, Nanjing 210042, China
- b. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- c. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- d. Illinois Sustainable Technology Center, Prairie Research Institute, one Hazelwood Dr., Champaign, University of Illinois at Urbana-Champaign, IL 61820, USA
- \* Corresponding Author: E-mail: zhouminghao@yzu.edu.cn (Minghao Zhou)

|                |                    |                     |         |                        | The      |
|----------------|--------------------|---------------------|---------|------------------------|----------|
| Catalyst       |                    |                     |         |                        | amount   |
|                | Sample             | Constant            |         | Element                | of       |
|                | quality            | volume              | Element | concentration          | elementa |
|                | m <sub>0</sub> (g) | V <sub>0</sub> (mL) |         | C <sub>o</sub> (mol/L) | 1        |
|                |                    |                     |         |                        | matter ( |
|                |                    |                     |         |                        | mol)     |
|                | 0.0591             | 10                  | Al      | 0.44                   | 0.0044   |
| П1/П5Z<br>640  | 0.0591             | 10 Cu 0.31          |         | 0.31                   | 0.0031   |
| -040           | 0.0591             | 10                  | Ni      | 0.94                   | 0.0094   |
|                | 0.0955             | 10                  | Al      | 0.39                   | 0.0039   |
| П1/П5Z         | 0.0955             | 10                  | Cu      | 0.27                   | 0.0027   |
| -660           | 0.0955             | 10                  | Ni      | 0.91                   | 0.0091   |
| HT/HSZ<br>-690 | 0.0559             | 10                  | Al      | 0.45                   | 0.0045   |
|                | 0.0559             | 10                  | Cu      | 0.34                   | 0.0034   |
|                | 0.0559             | 10                  | Ni      | 0.92                   | 0.0092   |

Table S1 ICP results of CuNiAl/HSZ catalysts

## Table S2 Si/Al molar ratio before and after CuNiAl mix-oxide incorporation

| Catalysts           | HSZ-640 | HSZ-660 | HSZ-690 |
|---------------------|---------|---------|---------|
| Si/Al ratio(before) | 17      | 28      | 241     |
| Si/Al ratio(after)  | 18      | 30      | 240     |

Table S3  $CO_2$ -TPD result of CuNiAl-HT and CuNiAl/HSZ materials

| Catalyst   | Temperature at maximum (°C) | Quantity(mmol/g) |
|------------|-----------------------------|------------------|
| CuNiAl-HT  | 109.4                       | 0.0772           |
| HT/HSZ-640 | 102.7                       | 0.0713           |
| HT/HSZ-660 | 93.5                        | 0.0561           |
| HT/HSZ-690 | 91.7                        | 0.0807           |

| Fntm | Catalysta                   | MW Elemental composition (wt.%) |             |       |       |       | UUV/ |      |      |      |        |
|------|-----------------------------|---------------------------------|-------------|-------|-------|-------|------|------|------|------|--------|
|      | Catalysis                   | M <sub>n</sub>                  | $M_{\rm w}$ | С     | Н     | 0     | Ν    | S    | O/C  | H/C  | 1111 v |
| 1    | HT/HSZ-660 <sup>a</sup>     | 485.3                           | 628.8       | 49.65 | 13.53 | 36.52 | 0.19 | 0.11 | 0.55 | 3.27 | 30.15  |
| 2    | HT/HSZ-<br>660 <sup>b</sup> | 492.1                           | 639.2       | 48.82 | 12.53 | 39.52 | 0.10 | 0.13 | 0.61 | 3.06 | 28.17  |

Table S4 Effect of basic catalysts on molecular weights and HHV of bio-oil

Reaction conditions: a- metal mixtures supported on acidic HSZ; b-metal mixtures supported on basic HSZ, HT (Cu/Ni/Al ratio of 1.5:4.5:2); HHV (MJ/kg) = (34C+124.3H+6.3N+19.3S-9.8O)/100, where C, H, N, S, and O are the weight percentages of carbon, hydrogen, nitrogen, sulfur, and oxygen.

## Table S5 Effect of Cu in CuNiAl-HT/HSZ-660 catalyst

| Entr | Catalysts  | М              | W           |      | Elemental composition (wt.%) |            |           |            |      |      | нну    |      |
|------|------------|----------------|-------------|------|------------------------------|------------|-----------|------------|------|------|--------|------|
| У    |            | M <sub>n</sub> | $M_{\rm w}$ | С    | Н                            | 0          | Ν         | S          | O/C  | H/C  | 1111 V |      |
| 1    | CuNiAl-    | 485.3          | 628.8       | 49.6 | 13.53                        | 26.52      | 0.10      | 0.11       | 0.55 | 3.27 | 30.1   |      |
|      | HT/HSZ-660 |                |             | 5    |                              | 30.32      | 0.19      |            |      |      | 5      |      |
| 2    | NiAl-      | 501.1          | 645.2       | 49.8 | 12.78                        | 12 70 20 ( | 29 (5     | 20.65 0.10 | 0.12 | 0.00 | 2 00   | 28.2 |
|      | HT/HSZ-660 |                |             | 0    |                              | 38.65      | 0.03 0.18 | 0.12       | 0.60 | 3.09 | 2      |      |

## Table S6 Mass balance of reaction <sup>a</sup>

| Catalyst   | Bio-oil | Char  | Gas product |
|------------|---------|-------|-------------|
| HT/HSZ-660 | 0.83g   | 0.15g | 0.02g       |

<sup>a</sup> Reaction condition: 1 g lignin, 0. 05 g catalyst and 4 g solvent. In the end of the reaction, the mixture including of solvent, bio-oil and solid residue was concentrated on the rotary evaporator to remove the solvent.

| Catalyst                             | HT/HSZ-640 | HT/HSZ-660 | HT/HSZ-690 |  |  |
|--------------------------------------|------------|------------|------------|--|--|
| $S_{BET}^{a} (m^{2}/g)$              | 168.8      | 173.4      | 177.3      |  |  |
| Mean pore size <sup>a</sup> (nm)     | 15.7       | 16.4       | 16.2       |  |  |
| Average metal size <sup>b</sup> (nm) | 14.8       | 14.5       | 14.2       |  |  |
| Cu/Ni ratio <sup>c</sup>             | 0.1965     | 0.2478     | 0.3247     |  |  |
| (Cu+Ni)/Al ratio <sup>c</sup>        | 2.96       | 2.95       | 2.95       |  |  |
| Al (wt%)                             | 4.7        | 4.9        | 4.9        |  |  |
| Cu (wt%)                             | 2.9        | 2.8        | 3.1        |  |  |
| Ni (wt%)                             | 9.8        | 9.7        | 9.6        |  |  |

Table S7 Chemical and physical properties of calcined HT/HSZ-640, HT/HSZ-660 and HT/HSZ-690.

a-Evaluated from N<sub>2</sub> adsorption-desorption isotherms; b-Calculated by TEM; c-Calculated by ICP analysis.



Fig. S1 XPS analysis for CuNiAl-HT/HSZ-600 catalyst (a) Si2p, (a) Al2p.



Fig. S2  $N_2$  adsorption isotherms of HT/HSZ-640, HT/HSZ-660 and HT/HSZ-690.