New journal of Chemistry, Royal Society of Chemistry

Supporting Information

Compositional Tuning of Negative Differential Resistance in Bulk Silver Iodide Memristor

Smita Gajanan Naik and Mohammad Hussain. K. Rabinal*
Department of Physics, Karnatak University, Dharwad - 03, INDIA

email: mkrabinal@yahoo.com

Figure S1: A schematic representation of experimental procedure.

Figure S2: Deconvoluted XPS spectra: (a) \& (b) are for $\operatorname{Ag} 3 \mathrm{~d}_{5 / 2}$ and I 3d $5 / 2$ peaks of pure $\mathrm{AgI}(\mathrm{S} 0)$ and (c) \& (d) are for $\mathrm{Ag} 3 \mathrm{~d}_{5 / 2}$ and I 3d $5 / 2$ peaks of Ag rich sample (S5). Spectra with points are experimentally recorded data and solid lines are fitted curves.

Figure S3: A set of 50 repeated scans of current- voltage characteristics of AgI (S0). (a) Normal I-V graph and (b) semi-logarithmic graph.

Figure S4: First quadrant measurements immediately after the one complete switching cycle (0 V $\rightarrow+1 \mathrm{~V} \rightarrow-1 \mathrm{~V} \rightarrow 0 \mathrm{~V}$) with sequence $0 \mathrm{~V} \rightarrow+1 \mathrm{~V} \rightarrow 0 \mathrm{~V}$ (first time- Red) and blue curve corresponds to the immediate next $0 \mathrm{~V} \rightarrow+1 \mathrm{~V} \rightarrow 0 \mathrm{~V}$ sequence.

Figure S5: Semi-logarithmic I-V characteristics of AgI (S0) and other samples (S1, S2, S3 and S4) that are treated with hydrazine hydrate.

