Electronic Supplementary Information

Modulation of luminescent properties for [cyclometalated]-Pt^{II}(isocyanide) complexes upon co-crystallisation with halosubstituted perfluorinated arenes

Svetlana A. Katkova,* Konstantin V. Luzyanin, Alexander S. Novikov, and Mikhail A. Kinzhalov*

Table of content

S1. Materials and instrumentation	3
S2. Synthetic work and characterization	4
S3. X-ray diffraction studies	5
S4. Computational details	11
S5. Photophysical data	33

S1. Materials and instrumentation

Reagents and materials used. Solvents, $K_2[PtCl_4]$, 2-phenylpyridine, formic acid and anilines were obtained from commercial sources (Aldrich) and used as received, apart from CH₂Cl₂, which was purified by the conventional distillation over CaCl₂. Phenyl isocyanide was synthesized by the modified literature procedures [*Angew. Chem. Int. Ed.*, 2018, 39, 12785–12789]. Complex [Pt(ppy)(μ -Cl)]₂ was prepared by the known method, that includes heating of K₂[PtCl₄] with 2-phenylpyridine in a glacial AcOH [*Z. Kristallogr. - Cryst. Mater.*, 2018, 11, 795–802].

Instrumentation and methods. The high-resolution mass spectra were obtained on a Bruker micrOTOF spectrometer equipped with electrospray ionization (ESI) source and MeOH was used as the solvent. The instrument was operated at positive ion mode using m/z range of 50–3000. The most intensive peak in the isotopic pattern is reported. Infrared spectra (4000–400 cm⁻¹) were recorded on Shimadzu IRAffinity-1 FTIR spectrophotometer in KBr pellets. NMR spectra were recorded on Bruker AVANCE III 400 spectrometers in CDCl₃ at ambient temperature (at 400, 100, and 86 MHz for ¹H, ¹³C, and ¹⁹⁵Pt NMR, respectively). Chemical shifts are given in δ -values [ppm] referenced to the residual signals of undeuterated solvent (CHCl₃): δ 7.26 (¹H) and 77.2 (¹³C). ¹H and ¹³C NMR data assignment for **1** was achieved by using 2D (¹H,¹H-COSY, ¹H,¹H-NOESY, ¹H,¹³C-HMQC/HSQC and ¹H,¹³C-HMBC) NMR correlation experiments. The luminescence spectra were recorded on a Fliorolog-3 instrument at RT. Quantum luminescence yields were determined on the same instrument with the help of direct measurement using an integrating sphere.

X-ray Structure Determinations. Single-crystal X-ray diffraction experiments were carried out on Agilent Technologies «Xcalibur» and «SuperNova» diffractometers with monochromated MoKα or CuKα radiation, respectively. Crystals were kept at 100(2) K during data collection. Structures have been solved by the Superflip [*J. Appl. Cryst.*, 2007, 786–790, *J. Appl. Cryst.*, 2012, 45, 575–580] structure solution program using Charge Flipping and refined by means of the ShelXL [*Acta Crystallog. C, Struc. Chem.*, 2015, **71**, 3–8] program incorporated in the OLEX2 program package [*J. Appl. Cryst.*, 2009, 339–341]. Empirical absorption correction was applied in CrysAlisPro (Agilent Technologies, 2012) program complex using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm. CCDC numbers 2042269–2042273 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

S2. Synthetic work and characterization

Synthesis of 1. A solution of CNPh (27 mg, 0.26 mmol) in MeCN (4 mL) was added dropwise to a suspension of $[PtCl(ppy)]_2$ (100 mg, 0.13 mmol) in MeCN (2 mL) at RT. The reaction mixture was stirred at RT for approximately 2.5 h; during this period, it turns to a pale-yellow homogeneous solution. Next, small amount of undissolved material was separated by filtration, Et₂O (3 mL) was added to the filtrate and the mixture left to stand without stirring for 3 d at RT. The formed yellow crystals were separated by centrifugation, washed with three 3-mL portions of Et₂O and dried in air at RT. Yield: 108 mg, 85%.

Yellow solid. HR-MS ESI⁺ m/z: calcd. for C₁₈H₁₃N₂Pt⁺ 452.0722, found 452.0695 [M – Cl]⁺. IR (KBr, selected bands, cm⁻¹): 2187 (C=N). ¹H NMR (400.13 MHz, CDCl₃, δ): 7.12 (td, $J_{H,H} = 7.4$, 1.4 Hz, 1H, H³), 7.17 (td, $J_{H,H} = 7.5$, 1.3 Hz, 1H, H⁴), 7.30 (ddd, $J_{H,H} = 7.3$, 5.8, 1.4 Hz, 1H, H¹⁰), 7.53–7.66 (m, 7H, H², H⁵ and 5H from Ph), 7.74–7.76 (m, 1H, H⁸), 7.89 (td, $J_{H,H} = 8.0$, 1.7 Hz, 1H, H⁹), 9.56 (d with Pt satellites, $J_{H,H} = 5.3$ Hz, $J_{H,Pt} = 28.6$ Hz, 1H, H¹¹). ¹³C{¹H} NMR (100.61 MHz, CDCl₃, δ): 118.57

(C⁸), 122.23 (C¹⁰), 124.23 (C⁵), 124.41 (C from Ph), 124.70 (C⁴), 126.52 (CH from Ph), 129.77 (CH from Ph), 130.10 (CH from Ph), 131.45 (C³), 136.14 (C²), 140.27 (C⁹), 141.32 (C¹), 144.02 (C⁶), 148.98 (C¹¹), 166.37 (C⁷); the C_{isocyanide} resonances were not detected. ¹⁹⁵Pt{¹H} NMR (80.015 MHz, CDCl₃, δ):-3893.

Synthesis of 2. Complex 2 was synthesized by the published procedure [*Russ. J. Gen. Chem.*, 2020, 4, 648-654].

Crystal Growth. The single crystals of supramolecular adducts $1 \cdot (IC_6F_5)$, $1 \cdot (o-Br_2C_6F_4)$, $2 \cdot (BrC_6F_5)$, and $2 \cdot (o-Br_2C_6F_4)$ were prepared by slow evaporation of a CH₂Cl₂ solution of a mixture of the corresponding isocyanide complex and X-^Farenes taken in a 1:1 molar ratio at 20–25° C.

S3. X-ray diffraction studies

Figure S1. A fragment of the layer-type crystal packing of **1** with week $\pi \cdots \pi$ stacking interactions between neighboring molecules.

Figure S2. A fragment of the layer-type crystal packing of **2** week $\pi \cdots \pi$ stacking interactions between neighboring molecules (CCDC 1956173, ref [*Russ. J. Gen. Chem.*, 2020, 4, 648-654]).

Figure S3. A fragment of the crystal packing of $1 \cdot (IC_6F_5)$.

Figure S4. A fragment of the crystal packing of $1 \cdot (o-Br_2C_6F_4)$.

Figure S5. A fragment of the crystal packing of $2 \cdot (BrC_6F_5)$.

Figure S6. A fragment of the crystal packing of $2 \cdot (o-Br_2C_6F_4)$.

Figure S7. The closest supramolecular environment of the o-Br₂C₆F₄ in 1·(o-Br₂C₆F₄). The dashed line denotes the XB contact. The dotted lines denote a H-bond contacts.

Figure S8. A fragment of the crystal packing of $2 \cdot (o-Br_2C_6F_4)$. The dashed lines denote the XB contacts.

Figure S9. Two types of crystallography independent isocyanide complexes and two types of crystallography independent X-^FArenes in $2 \cdot (BrC_6F_5)$. The dashed lines denote the XB contacts.

Figure S10. Two types of crystallography independent isocyanide complexes and two types of crystallography independent X-^FArenes in 2 (o-Br₂C₆F₄). The dashed lines denote the XB contacts.

Figure S11. Molecular structure of $1 \cdot (o-Br_2C_6F_4)$ with dashed Pt•••C short contacts.

Figure S12. Two types of crystallography independent isocyanide complexes and two types of crystallography independent X-^FArenes in $2 \cdot (BrC_6F_5)$. The dashed lines denote the Pt•••C short contacts.

Figure S13. Two types of crystallography independent isocyanide complexes and two types of crystallography independent X-^FArenes in $2 \cdot (o-Br_2C_6F_4)$. The dashed lines denote the Pt•••C short contacts.

S4. Computational details

The full geometry optimization of BrC₆F₅, IC₆F₅, *o*-Br₂C₆F₄, and *p*-Br₂C₆F₄ model species and single point calculations based on the experimental X-ray geometries of 1, 2, $1 \cdot (IC_6F_5)$, $1 \cdot (o Br_2C_6F_4$), 2 · (BrC_6F_5), and 2 · (o-Br_2C_6F_4) have been carried out at the DFT level of theory using the dispersion-corrected hybrid functional @B97XD [Phys. Chem. Chem. Phys. 2008, 10, 6615.] with the help of Gaussian-09 [M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, M. J. A.; J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, C. J.;, D. J. Fox, in Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.] program package. The Douglas-Kroll-Hess 2nd order scalar relativistic calculations requested relativistic core Hamiltonian were carried out using the DZP-DKH basis sets [Mol. Phys. 2010, 108, 1965. || J. Chem. Phys. 2009, 130, 064108. || Chem. Phys. Lett. 2013, 582, 158. || J. Mol. Struct. - Theochem 2010, 961, 107.] for all atoms. The molecular surface electrostatic potential calculations and topological analysis of the electron density distribution with the help of the atoms in molecules (QTAIM) method developed by Bader [Chem. Rev. 1991, 91, 893.] has been performed by using the Multiwfn program (version 3.7) [J. Comput. Chem. 2012, 33, 580.]. The Cartesian atomic coordinates for all model species and supramolecular associates presented in Table S4, Supporting Information.

Model species	$V_{S}(\mathbf{r})_{max}$ (σ -holes on Br or I atoms), kcal/mol
BrC ₆ F ₅	22.7
IC ₆ F ₅	31.0
o-Br ₂ C ₆ F ₄	21.4
p-Br ₂ C ₆ F ₄	22.4

Table S1. Values of maximal electrostatic potential calculated on the 0.001 a.u. molecular surfaces $(V_S(\mathbf{r})_{max})$ for the optimized equilibrium geometries of BrC₆F₅, IC₆F₅, *o*-Br₂C₆F₄, and *p*-Br₂C₆F₄ model species (ω B97XD/DZP-DKH level of theory).

Table S2. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to intermolecular noncovalent interactions Pt···C and X···Cl (X = Br, I) in 1·(IC₆F₅), 1·(*o*-Br₂C₆F₄), 2·(BrC₆F₅), and 2·(*o*-Br₂C₆F₄), as well as energies for these contacts E_{int} (kcal/mol), defined by different approaches.

Contact	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ_2	H_{b}	V(r)	G(r)	${\rm E_{int}}^{a}$	$E_{int}{}^{b}$	$\mathrm{E_{int}}^{\mathrm{c}}$	$E_{int}{}^d$
			2.((BrC_6F_5)						
Br…Cl, 3.414 Å	0.009	0.030	-0.009	0.001	-0.005	0.006	1.6	1.6	1.8	2.1
Br…Cl, 3.432 Å	0.008	0.028	-0.008	0.001	-0.004	0.006	1.3	1.6	1.5	2.1
Pt…C, 3.537 Å	0.008	0.021	-0.008	0.001	-0.003	0.004	0.9	1.1		
Pt…C, 3.540 Å	0.008	0.025	-0.008	0.001	-0.003	0.005	0.9	1.3		
Pt…C, 3.489 Å	0.009	0.025	-0.009	0.001	-0.004	0.005	1.3	1.3		
Pt…C, 3.513 Å	0.009	0.024	-0.009	0.001	-0.004	0.005	1.3	1.3		
			2 ·(<i>o</i>	-Br ₂ C ₆ F	4)					
Br…Cl, 3.343 Å	0.010	0.034	-0.010	0.001	-0.006	0.007	1.9	1.9	2.2	2.5
Br…Cl, 3.678 Å	0.006	0.017	-0.006	0.001	-0.003	0.004	0.9	1.1	1.1	1.4
Pt…C, 3.480 Å	0.009	0.024	-0.009	0.001	-0.004	0.005	1.3	1.3		
Pt…C, 3.558Å	0.008	0.024	-0.008	0.001	-0.003	0.005	0.9	1.3		
Pt…C, 3.394 Å	0.010	0.028	-0.010	0.001	-0.005	0.006	1.6	1.6		
Pt…C, 3.659 Å	0.006	0.016	-0.006	0.001	-0.002	0.003	0.6	0.8		
			1	\cdot (IC ₆ F ₅)						
I…Cl, 3.169 Å	0.018	0.057	-0.018	0.001	-0.013	0.014	4.1	3.8	5.5	5.9
Pt…C, 3.456 Å	0.009	0.026	-0.009	0.001	-0.004	0.005	1.3	1.3		
Pt…C, 3.562 Å	0.007	0.020	-0.007	0.001	-0.003	0.004	0.9	1.1		
$1 \cdot (o - Br_2C_6F_4)$										
Br…Cl, 3.482 Å	0.008	0.025	-0.008	0.001	-0.004	0.005	1.3	1.3	1.5	1.8
Pt⋯C, 3.482 Å	0.008	0.024	-0.008	0.001	-0.004	0.005	1.3	1.3		
Pt…C, 3.555 Å	0.007	0.021	-0.007	0.001	-0.003	0.004	0.9	1.1		

^a $E_{int} = -V(\mathbf{r})/2$ for all types of noncovalent interactions [Chem. Phys. Lett. 1998, 285, 170.] (this correlation was initially developed for hydrogen bonding).

^b $E_{int} = 0.429 G(\mathbf{r})$ for all types of noncovalent interactions [J. Comput. Chem. 2012, 33, 2303.] (this correlation was initially developed for hydrogen bonding).

^c $E_{int} = 0.58(-V(\mathbf{r}))$ or $0.68(-V(\mathbf{r}))$ for noncovalent interactions involving bromine and iodine atoms as halogen bond donor, respectively [Russ. Chem. Rev. 2014, 83, 1181.].

 d E_{int} = 0.57G(**r**) or 0.67G(**r**) for noncovalent interactions involving bromine and iodine atoms as halogen bond donor, respectively [Russ. Chem. Rev. 2014, 83, 1181.].

Figure S14. Structures of model supramolecular associates.

TD-DFT calculations (ω B97XD/DZP-DKH level of theory, 25 first exited states) were carried out for a correct assignment of the absorption bands and to elucidate the nature of the transitions in the absorbance profile. The simulated based on TD-DFT calculations and the experimental UVvis spectra of complexes 1 and 2 [*Russ. J. Gen. Chem.*, 2020, 4, 648-654] have a good agreement. The lowest-energy spin-allowed transitions for all complexes to give S1 are HOMO \rightarrow LUMO transitions (**Table S3**). This absorption is mainly assigned to a ¹IL/¹MLCT admixture located on the cyclometalated group.

Table S3. Theoretically calculated transition energies (in eV) for most important low-lying singlet excited states of **1** and **2** (in the area of absorption wavelengths <250 nm), absorption wavelengths (in nm), oscillator strengths f and main contributing transitions.

State ^a	Transition energy	Wavelength	f	Main contributing transitions ^b
1				
S 1	2.7960	443.44	0.0152	$HOMO \rightarrow LUMO$
S2	3.7270	332.67	0.0124	$HOMO \rightarrow LUMO+1$
S 3	3.7826	327.78	0.0680	$HOMO \rightarrow LUMO+4$
S4	4.0189	308.50	0.0074	$HOMO \rightarrow LUMO+2$
S5	4.2339	292.83	0.0442	$HOMO-1 \rightarrow LUMO$
S6	4.6327	267.63	0.0879	$HOMO-3 \rightarrow LUMO$
S 7	4.6933	264.17	0.0029	$HOMO-2 \rightarrow LUMO$
S 8	4.6996	263.82	0.0047	$HOMO \rightarrow LUMO+5$
S9	4.8347	256.45	0.0992	$HOMO-1 \rightarrow LUMO+1$
S10	4.9342	251.28	0.0038	$HOMO-1 \rightarrow LUMO+4$
2				
S 1	2.7946	443.66	0.0159	$HOMO \rightarrow LUMO$
S2	3.6823	336.70	0.0067	$HOMO \rightarrow LUMO+1$
S3	3.8090	325.51	0.2103	$HOMO \rightarrow LUMO+6$
S4	4.0178	308.59	0.0040	$HOMO \rightarrow LUMO+2$
S5	4.1990	295.27	0.1312	$HOMO-1 \rightarrow LUMO$
S6	4.3127	287.49	1.4202	$HOMO-2 \rightarrow LUMO$
S7	4.6058	269.19	0.0496	$HOMO \rightarrow LUMO+7$
S 8	4.6455	266.89	0.0523	$HOMO \rightarrow LUMO+7$
S 9	4.6714	265.41	0.0021	$HOMO-3 \rightarrow LUMO$
S10	4.8146	257.52	0.0579	$HOMO-5 \rightarrow LUMO$

^a The excited states are labeled according to their vertical transition energies.

^b Plots of molecular orbitals involving in transitions are given in **Figures S15** and **S16**.

Figure S15. Surface plots of the HOMOs and LUMOs for complex 1.

Figure S16. Surface plots of the HOMOs and LUMOs for complex 2.

Figure S17. Calculated UV-Vis spectra for complexes 1 (top) and 2 (bottom).

Atom	Х	Y	Z				
	$2 \cdot (BrC_6F_5)$						
Pt	11.380854	1.031324	8.263357				
Cl	9.107656	0.635857	7.625604				
Ν	10.937295	1.377596	10.249477				
Ν	12.211537	0.284142	5.435858				
С	12.012962	1.675875	11.030184				
С	13.208599	1.456760	8.914408				
С	13.283621	1.764228	10.298514				
С	11.846217	1.851874	12.401269				

Table S4. Cartesian atomic coordinates for all model species and supramolecular associates.

Н	12.577174	2.061298	12.936627
С	12.704260	-1.095574	1.540081
С	13.648323	-0.098955	3.535067
Н	14.370338	0.268684	3.991550
С	13.791822	-0.559803	2.240723
Н	14.624117	-0.514050	1.828040
С	14.398807	1.564197	8.172764
Н	14.389224	1.370033	7.263288
С	14.404411	-3.098001	-2.642989
Н	15.054124	-3.281980	-2.003435
С	12.880045	-1.598125	0.201687
С	11.912685	0.605746	6.506351
С	13.003855	-2.032113	-0.909809
С	13.648708	-3.184940	-4.919173
Н	13.796024	-3.427401	-5.804851
С	12.395040	-0.197203	4.142622
С	11.459133	-1.169084	2.162042
Н	10.730260	-1.516423	1.700600
С	12.233006	-2.204578	-3.235029
Н	11.430733	-1.802863	-2.989459
С	10.594641	1.714043	12.963943
Н	10.476475	1.826718	13.879403
С	12.461187	-2.553041	-4.557632
Н	11.820243	-2.364751	-5.204638
С	9.513795	1.406576	12.151099
Н	8.663098	1.307479	12.513277
С	11.303941	-0.725906	3.466083
Н	10.475274	-0.782176	3.884833
С	9.720057	1.250368	10.807441
Н	8.994366	1.049327	10.261833
С	15.588172	1.954363	8.775055
Н	16.359847	2.030961	8.261473
С	14.480105	2.126827	10.901082
Н	14.508761	2.300161	11.814437
С	13.212033	-2.458327	-2.274245
С	15.638719	2.230730	10.133396
Н	16.441011	2.483900	10.529678
С	14.607303	-3.452119	-3.960327
Н	15.398086	-3.875448	-4.206203

Pt	16.198362	7.250156	15.052846	
Cl	13.917968	6.918727	14.424236	
Ν	15.779526	7.584907	17.042845	
Ν	17.021068	6.711982	12.166337	
С	18.042863	7.572184	15.699187	
С	16.863643	7.819572	17.820504	
С	17.937041	6.205190	6.683936	
С	19.647792	7.065393	2.224931	
Н	20.400910	7.509341	1.907385	
С	18.746569	6.508417	1.328420	
Н	18.891754	6.581665	0.412738	
С	17.293616	6.499935	10.825449	
С	18.461203	7.046309	10.276904	
Н	19.076630	7.489274	10.815226	
С	17.629598	5.842591	1.805765	
Н	17.032725	5.452955	1.208572	
С	17.394325	5.754238	3.184885	
Н	16.636751	5.315796	3.499550	
С	18.140882	7.833708	17.099084	
С	19.239720	7.593389	14.975828	
Н	19.219260	7.433202	14.060146	
С	18.678353	6.913426	8.922442	
Н	19.449936	7.267226	8.542727	
С	16.380564	5.802302	10.046405	
Н	15.619544	5.430782	10.430663	
С	20.452985	7.847845	15.589201	
Н	21.231200	7.856093	15.079941	
С	19.432555	6.965731	3.587982	
Н	20.050517	7.329603	4.179884	
С	18.077729	6.241238	5.494868	
С	16.709211	8.032325	19.189096	
Н	17.452078	8.204917	19.721406	
С	16.617737	5.669419	8.696098	
Н	16.021086	5.188787	8.168747	
С	16.721304	6.924028	13.273677	
С	20.525095	8.088871	16.945880	
Н	21.348283	8.248768	17.348035	
С	17.746575	6.249720	8.111260	
С	18.293612	6.321109	4.083889	

С	14.345063	7.714255	18.935324
Н	13.489557	7.660749	19.296478
С	15.442614	7.986382	19.753709
Н	15.327992	8.135217	20.664404
С	19.361413	8.091698	17.711349
Н	19.400953	8.265407	18.624095
С	14.545587	7.526947	17.592498
Н	13.813770	7.354964	17.044923
Br	12.510532	5.379764	11.698688
F	13.624899	4.911706	8.893906
F	9.513759	4.938565	11.219127
F	12.323077	4.346955	6.611073
F	8.232207	4.371694	8.918563
F	9.624452	4.118652	6.603593
С	10.260866	4.351196	7.758585
С	12.298160	4.773169	8.922442
С	10.235038	4.780237	10.092117
С	11.634648	4.474183	7.755537
С	9.559274	4.498215	8.926598
С	11.603239	4.928670	10.112341
Br	17.603922	11.420830	18.813703
F	18.448167	11.034905	15.895333
F	14.561129	11.304911	18.566857
F	14.211224	10.600210	13.956865
F	13.047581	10.921814	16.379050
F	16.905360	10.644032	13.723594
С	14.967035	10.764899	15.049244
С	16.337300	10.782570	14.935380
С	16.538745	11.175563	17.294123
С	14.374051	10.938777	16.271557
С	15.166280	11.134567	17.384716
С	17.120143	11.006632	16.043551
Br	17.603922	4.352610	18.813703
F	18.448167	3.966685	15.895333
F	14.561129	4.236691	18.566857
F	14.211224	3.531990	13.956865
F	13.047581	3.853594	16.379050
F	16.905360	3.575812	13.723594
С	14.967035	3.696679	15.049244

С	16.337300	3.714350	14.935380
С	16.538745	4.107343	17.294123
С	14.374051	3.870557	16.271557
С	15.166280	4.066347	17.384716
С	17.120143	3.938412	16.043551
Br	7.544565	-0.818500	4.961560
F	8.388809	-0.432575	2.043191
F	4.501772	-0.702581	4.714715
F	4.151867	0.002120	0.104722
F	2.988224	-0.319484	2.526908
F	6.846002	-0.041702	-0.128548
С	4.907678	-0.162569	1.197102
С	6.277943	-0.180240	1.083238
С	6.479387	-0.573233	3.441980
С	4.314694	-0.336447	2.419415
С	5.106923	-0.532237	3.532573
С	7.060786	-0.404302	2.191409
Br	12.510532	-1.688456	11.698688
F	13.624899	-2.156514	8.893906
F	9.513759	-2.129655	11.219127
F	12.323077	-2.721265	6.611073
F	8.232207	-2.696526	8.918563
F	9.624452	-2.949568	6.603593
С	10.260866	-2.717024	7.758585
С	12.298160	-2.295051	8.922442
С	10.235038	-2.287983	10.092117
С	11.634648	-2.594037	7.755537
С	9.559274	-2.570005	8.926598
С	11.603239	-2.139550	10.112341
	2 ·(<i>o</i> -B	$r_2C_6F_4$)	
Pt	18.814028	4.618559	12.076351
Cl	20.170729	4.143355	14.005918
Ν	20.394774	4.939658	10.785740
Ν	16.410385	3.876965	13.791788
С	13.922008	2.466965	16.819798
С	15.564613	3.382856	14.787627
С	12.304583	1.531738	18.675929
С	21.031679	5.413716	8.549735
Н	20.791165	5.634948	7.657323

		-	-
С	20.040648	5.235407	9.507141
С	13.054786	1.962830	17.847894
С	17.786251	5.117251	10.431260
С	17.297497	4.206371	13.137732
С	11.357884	1.084892	19.664219
С	15.318682	2.304410	16.913136
Н	15.700113	1.875065	17.670276
С	16.138860	2.775604	15.891904
Н	17.082838	2.681143	15.951029
С	9.437031	0.383830	21.564618
Н	8.773072	0.167990	22.207658
С	10.184798	0.443266	19.280227
Н	10.032168	0.254559	18.361941
С	13.378709	3.074933	15.672627
Н	12.435542	3.161940	15.592637
С	18.588638	5.373614	9.306051
С	14.196492	3.548276	14.656198
Н	13.826406	3.974749	13.891715
С	11.574980	1.363454	21.025519
Н	12.374947	1.792943	21.304745
С	9.233813	0.074474	20.225622
Н	8.448496	-0.387489	19.956897
С	10.605290	1.004688	21.961992
Н	10.749417	1.189972	22.882749
С	21.690565	4.790709	11.111052
Н	21.919577	4.554861	12.002709
С	22.700087	4.971166	10.184874
Н	23.612937	4.889624	10.437506
С	16.389861	5.255458	10.308410
Н	15.821045	5.072036	11.047637
С	15.847278	5.666499	9.086774
Н	14.908002	5.782021	9.007677
С	22.350870	5.271928	8.884312
Н	23.024524	5.380682	8.224698
С	16.654069	5.907109	7.992106
Н	16.271993	6.185034	7.167639
С	18.022362	5.740258	8.105691
Н	18.578206	5.880814	7.347556
Pt	4.175203	3.391163	30.494570

Cl	2.523646	3.734462	28.768151
Ν	2.804612	2.968951	31.987642
Ν	6.424524	3.979368	28.535148
С	5.417093	3.069205	31.930678
С	1.467442	3.014065	31.812975
Н	1.111577	3.249347	30.964350
С	10.466190	4.389693	24.702437
С	3.331030	2.651002	33.180453
С	6.842002	3.097133	32.018869
Н	7.326251	3.338909	31.238910
С	7.452830	4.157677	27.609656
С	4.798863	2.649570	33.201728
С	14.214961	4.146219	20.795605
Н	14.867413	4.095354	20.105964
С	9.446435	4.354604	25.715777
С	12.292950	4.289439	22.816451
С	2.510347	2.339499	34.254188
Н	2.885433	2.113319	35.097220
С	1.128558	2.363846	34.078492
Н	0.549233	2.135647	34.796787
С	14.480071	3.595538	22.049154
Н	15.311931	3.168563	22.214075
С	11.298851	4.358185	23.848665
С	5.564974	3.776711	29.254060
С	7.198738	4.835107	26.431601
Н	6.345345	5.224193	26.275877
С	8.189631	4.938226	25.488608
Н	8.026514	5.407386	24.678931
С	6.918560	2.388194	34.316299
Н	7.427762	2.145951	35.081572
С	12.044404	4.848713	21.550205
Н	11.216852	5.282727	21.374509
С	13.528489	3.671445	23.056660
Н	13.714935	3.302811	23.912217
С	13.007552	4.762781	20.561229
Н	12.833090	5.135905	19.705260
С	9.707101	3.713695	26.942904
Н	10.568188	3.351427	27.116884
С	0.609461	2.719748	32.857200

Н	-0.330886	2.764146	32.730678	
С	5.537114	2.335918	34.349242	
Н	5.090789	2.088112	35.149688	
С	7.559308	2.799951	33.146137	
Н	8.505406	2.874769	33.131450	
С	8.706725	3.612008	27.895162	
Н	8.868398	3.179463	28.725394	
Br	23.499597	4.152449	14.316817	
Br	25.412793	4.715877	17.096038	
F	28.300166	4.566570	16.371636	
F	25.306129	3.573339	11.969629	
F	29.476480	4.058855	14.026507	
F	27.992745	3.586229	11.824131	
С	27.375476	3.803923	12.995323	
С	25.366546	4.094660	14.284560	
С	26.014638	3.800343	13.083514	
С	27.526973	4.308774	15.316088	
С	26.156667	4.345295	15.411828	
С	28.144638	4.058855	14.103717	
Br	-3.210668	1.809370	26.305663	
Br	-0.914753	2.429441	28.806928	
F	-5.972544	2.126101	27.413714	
F	-2.359113	3.014065	31.351774	
F	-6.797375	2.701845	29.895762	
F	-4.983919	3.120048	31.884352	
С	-3.706193	2.260728	28.055416	
С	-4.569556	2.853659	30.636293	
С	-5.480795	2.648138	29.646974	
С	-3.225598	2.782049	30.349415	
С	-5.054934	2.320880	28.351216	
С	-2.778773	2.487015	29.071844	
Br	20.442940	1.771130	9.147856	
Br	22.738854	1.151059	11.649121	
F	17.681064	1.454399	10.255907	
F	21.294494	0.566435	14.193967	
F	16.856233	0.878655	12.737956	
F	18.669689	0.460452	14.726545	
С	19.947415	1.319772	10.897609	
С	19.084051	0.726842	13.478487	

С	18 172813	0 932362	12 489167
C	20.428009	0.798452	13.191608
С	18.598673	1.259620	11.193410
С	20.874835	1.093485	11.914038
Br	-0.154011	6.589051	31.474624
Br	1.759185	6.025623	34.253845
F	4.646559	6.174930	33.529442
F	1.652522	7.168161	29.127436
F	5.822872	6.682645	31.184313
F	4.339138	7.155271	28.981937
С	3.721868	6.937577	30.153129
С	1.712939	6.646840	31.442367
С	2.361030	6.941157	30.241320
С	3.873365	6.432726	32.473894
С	2.503059	6.396205	32.569635
С	4.491030	6.682645	31.261524
Br	20.442940	8.932130	9.147856
Br	22.738854	8.312059	11.649121
F	17.681064	8.615399	10.255907
F	21.294494	7.727435	14.193967
F	16.856233	8.039655	12.737956
F	18.669689	7.621452	14.726545
С	19.947415	8.480772	10.897609
С	19.084051	7.887842	13.478487
С	18.172813	8.093362	12.489167
С	20.428009	7.959452	13.191608
С	18.598673	8.420620	11.193410
С	20.874835	8.254485	11.914038
Br	-0.154011	-0.571949	31.474624
Br	1.759185	-1.135377	34.253845
F	4.646559	-0.986070	33.529442
F	1.652522	0.007161	29.127436
F	5.822872	-0.478355	31.184313
F	4.339138	-0.005729	28.981937
С	3.721868	-0.223423	30.153129
С	1.712939	-0.514160	31.442367
С	2.361030	-0.219843	30.241320
С	3.873365	-0.728274	32.473894
С	2.503059	-0.764795	32.569635

С	4.491030	-0.478355	31.261524	
$1 \cdot (IC_6F_5)$				
Pt	15.241121	11.412510	-7.767918	
Cl	13.413570	12.238400	-6.446116	
N	14.132784	11.235342	-9.489343	
С	16.691545	10.777762	-8.999975	
N	16.966302	11.382318	-5.259440	
С	16.247782	10.569244	-10.329228	
С	14.821193	10.796586	-10.579839	
С	12.805337	11.443860	-9.568929	
Н	12.351106	11.752604	-8.819687	
С	17.731899	11.345393	-4.102905	
С	12.098043	11.210726	-10.739010	
Н	11.180140	11.352822	-10.773791	
С	16.332307	11.414175	-6.233096	
С	18.024764	10.520011	-8.710418	
Н	18.340297	10.647185	-7.844151	
С	17.135363	10.139900	-11.318124	
Н	16.837105	10.020567	-12.190758	
С	18.892422	10.075462	-9.701008	
Н	19.779465	9.898563	-9.486583	
С	14.153024	10.559832	-11.777013	
Н	14.624646	10.267132	-12.522597	
С	17.214632	11.881168	-2.926050	
Н	16.365931	12.260388	-2.908761	
С	18.455648	9.891561	-10.994701	
Н	19.048423	9.600976	-11.650319	
С	19.265326	11.289644	-1.816928	
Н	19.788396	11.273911	-1.047164	
С	19.005192	10.774866	-4.155398	
Н	19.333320	10.412052	-4.946616	
С	17.996838	11.836279	-1.777982	
Н	17.662879	12.175106	-0.977805	
С	19.763416	10.761833	-3.007329	
Н	20.618880	10.396131	-3.024923	
С	12.787942	10.761109	-11.853212	
Н	12.334841	10.596351	-12.649139	
Ι	13.170161	11.191467	-3.464694	
F	15.008454	10.912429	-0.823798	

F	11.876632	9.510727	2.368103
F	9.908387	9.612090	0.507656
F	14.407925	10.184065	1.699073
F	10.465714	10.355658	-2.018433
С	13.739434	10.600377	-0.521541
С	13.443100	10.227507	0.767072
С	11.459672	10.320905	-1.122669
С	12.157449	9.890113	1.112509
С	12.761577	10.645266	-1.500278
С	11.161493	9.937899	0.165945
Ι	15.020199	6.909033	-11.931274
F	16.858493	7.188071	-9.290379
F	13.726670	8.589773	-6.098478
F	11.758425	8.488410	-7.958924
F	16.257963	7.916435	-6.767507
F	12.315752	7.744842	-10.485013
С	15.589472	7.500123	-8.988122
С	15.293138	7.872993	-7.699508
С	13.309710	7.779595	-9.589249
С	14.007487	8.210387	-7.354072
С	14.611615	7.455234	-9.966858
С	13.011531	8.162601	-8.300635
Ι	15.020199	14.149233	-11.931274
F	16.858493	14.428271	-9.290379
F	13.726670	15.829973	-6.098478
F	11.758425	15.728610	-7.958924
F	16.257963	15.156635	-6.767507
F	12.315752	14.985042	-10.485013
С	15.589472	14.740323	-8.988122
С	15.293138	15.113193	-7.699508
С	13.309710	15.019795	-9.589249
С	14.007487	15.450587	-7.354072
С	14.611615	14.695434	-9.966858
С	13.011531	15.402801	-8.300635
	1 ·(<i>o</i> -B	$r_2C_6F_4$	
Pt	1.247567	4.399451	9.192465
Cl	1.372020	4.801355	11.564861
N	1.154072	6.395828	8.704242
Ν	1.460179	1.388649	9.472135

С	1.104058	6.661805	7.362610
С	1.167751	4.227803	7.196815
С	1.120088	5.468000	6.527091
С	1.152718	7.413346	9.565940
Н	1.175273	7.224193	10.475500
С	1.119207	8.724676	9.171086
Н	1.115717	9.409707	9.801303
С	1.068566	7.973135	6.919763
Н	1.030002	8.154758	6.008305
С	1.203938	3.066472	6.431104
Н	1.236108	2.236931	6.849889
С	3.043047	-0.402059	9.330336
Н	3.728524	0.217328	9.228787
С	1.192177	3.143791	5.056750
Н	1.242879	2.354982	4.565931
С	1.717475	-0.004639	9.469953
С	1.089844	9.009210	7.825092
Н	1.084799	9.891559	7.529736
С	1.073278	5.498927	5.113469
Н	1.018355	6.316483	4.673785
С	1.372341	2.540702	9.430686
С	0.670848	-0.903086	9.583392
Н	-0.207235	-0.602083	9.638977
С	2.249522	-2.687608	9.489587
Н	2.423587	-3.600916	9.494037
С	3.303357	-1.806172	9.354333
Н	4.174046	-2.122886	9.277522
С	0.955716	-2.256168	9.616115
Н	0.268462	-2.872865	9.724994
С	1.108944	4.329864	4.380481
Н	1.076687	4.347833	3.452050
Br	1.953451	7.752158	13.319453
Br	2.061512	8.273752	16.679640
F	1.827697	10.394766	11.900378
F	1.792777	12.895263	12.888386
F	2.012835	11.218987	17.255777
F	1.913046	13.306600	15.549833
С	1.873120	10.571054	13.228702
С	1.987187	9.695803	15.460391

С	1.860408	11.849910	13.726087	
С	1.940716	9.471578	14.068585	
С	1.910214	12.054032	15.080808	
С	1.966556	10.976205	15.938143	
Br	4.559960	7.711642	8.495689	
Br	4.451900	7.190048	5.135503	
F	4.685714	5.069034	9.914764	
F	4.720634	2.568537	8.926756	
F	4.500576	4.244813	4.559365	
F	4.600365	2.157200	6.265309	
С	4.640291	4.892746	8.586440	
С	4.526224	5.767997	6.354751	
С	4.653003	3.613890	8.089055	
С	4.572695	5.992223	7.746557	
С	4.603197	3.409768	6.734334	
С	4.546855	4.487595	5.876999	
Br	-2.300340	7.711642	8.495689	
Br	-2.408400	7.190048	5.135503	
F	-2.174586	5.069034	9.914764	
F	-2.139666	2.568537	8.926756	
F	-2.359724	4.244813	4.559365	
F	-2.259935	2.157200	6.265309	
С	-2.220009	4.892746	8.586440	
С	-2.334076	5.767997	6.354751	
С	-2.207297	3.613890	8.089055	
С	-2.287605	5.992223	7.746557	
С	-2.257103	3.409768	6.734334	
С	-2.313445	4.487595	5.876999	
	BrC	C_6F_5		
Br	2.506572	0.000052	-0.000088	
F	0.556447	2.363735	0.000247	
F	0.555592	-2.363984	0.000255	
F	-3.494934	0.000867	0.000005	
F	-2.135392	-2.355728	-0.000051	
F	-2.136266	2.354914	-0.000118	
С	-2.170000	-0.000267	-0.000068	
С	-1.472940	1.205828	-0.000155	
С	0.636057	-0.000244	0.000075	
С	-1.473750	-1.205932	0.000044	

С	-0.079578	-1.198935	-0.000154	
С	-0.079629	1.199539	0.000265	
	IC	2 ₆ F ₅		
Ι	2.284072	0.000028	-0.000014	
F	0.133945	2.367844	0.000015	
F	-3.902848	-0.000413	-0.000056	
F	-2.545058	-2.353937	-0.000018	
F	-2.545438	2.353775	0.000055	
F	0.134578	-2.367475	0.000058	
С	-0.489594	1.195255	-0.000041	
С	-1.882697	1.204349	0.000071	
С	-0.489377	-1.195151	0.000129	
С	-2.578049	-0.000098	-0.000094	
С	0.233274	0.000254	-0.000009	
С	-1.882299	-1.204551	-0.000011	
	o-Br	$^{2}C_{6}F_{4}$		
Br	1.720538	1.715528	0.000066	
Br	1.720585	-1.715484	-0.000094	
F	-1.113408	-2.709574	0.000049	
F	-1.113645	2.709531	-0.000252	
F	-3.431995	-1.361454	0.000009	
F	-3.431858	1.361423	-0.000093	
С	-2.286637	0.694661	0.000069	
С	0.143466	0.702334	0.000168	
С	-1.075200	1.382462	-0.000015	
С	-1.075224	-1.382502	0.000091	
С	0.143444	-0.702287	0.000146	
С	-2.286706	-0.694812	0.000130	
$p-\mathrm{Br_2C_6F_4}$				
Br	3.282135	-0.000316	0.000164	
Br	-3.282101	-0.000183	-0.000027	
F	1.331094	-2.362913	-0.000512	
F	-1.331961	-2.362407	0.000028	
F	1.331145	2.363024	-0.000745	
F	-1.330537	2.363252	0.000290	
С	0.696873	-1.196955	0.000059	
С	-0.696498	-1.196774	0.000169	
С	0.697152	1.197055	0.000111	
С	1.412796	0.000242	-0.000050	

С	-0.697124	1.197311	0.000029	
С	-1.413007	0.000600	0.000289	
1				
Pt	15.241121	11.412510 -7.767918		
Cl	13.413570	12.238400	-6.446116	
Ν	14.132784	11.235342	-9.489343	
С	16.691545	10.777762	-8.999975	
Ν	16.966302	11.382318	-5.259440	
С	16.247782	10.569244	-10.329228	
С	14.821193	10.796586	-10.579839	
С	12.805337	11.443860	-9.568929	
Н	12.351106	11.752604	-8.819687	
С	17.731899	11.345393	-4.102905	
С	12.098043	11.210726	-10.739010	
Н	11.180140	11.352822	-10.773791	
С	16.332307	11.414175	-6.233096	
С	18.024764	10.520011	-8.710418	
Н	18.340297	10.647185	-7.844151	
С	17.135363	10.139900	-11.318124	
Н	16.837105	10.020567	-12.190758	
С	18.892422	10.075462	-9.701008	
Н	19.779465	9.898563	-9.486583	
С	14.153024	10.559832	-11.777013	
Н	14.624646	10.267132	-12.522597	
С	17.214632	11.881168	-2.926050	
Н	16.365931	12.260388	-2.908761	
С	18.455648	9.891561	-10.994701	
Н	19.048423	9.600976	-11.650319	
С	19.265326	11.289644	-1.816928	
Н	19.788396	11.273911	-1.047164	
С	19.005192	10.774866	-4.155398	
Н	19.333320	10.412052	-4.946616	
С	17.996838	11.836279	-1.777982	
Н	17.662879	12.175106	-0.977805	
С	19.763416	10.761833	-3.007329	
Н	20.618880	10.396131	-3.024923	
С	12.787942	10.761109	-11.853212	
Н	12.334841	10.596351	-12.649139	
2				

Pt	16.198362	7.250156	15.052846
Cl	13.917968	6.918727	14.424236
Ν	15.779526	7.584907	17.042845
Ν	17.021068	6.711982	12.166337
С	18.042863	7.572184	15.699187
С	16.863643	7.819572	17.820504
С	17.937041	6.205190	6.683936
С	19.647792	7.065393	2.224931
Н	20.400910	7.509341	1.907385
С	18.746569	6.508417	1.328420
Н	18.891754	6.581665	0.412738
С	17.293616	6.499935	10.825449
С	18.461203	7.046309	10.276904
Н	19.076630	7.489274	10.815226
С	17.629598	5.842591	1.805765
Н	17.032725	5.452955	1.208572
С	17.394325	5.754238	3.184885
Н	16.636751	5.315796	3.499550
С	18.140882	7.833708	17.099084
С	19.239720	7.593389	14.975828
Н	19.219260	7.433202	14.060146
С	18.678353	6.913426	8.922442
Н	19.449936	7.267226	8.542727
С	16.380564	5.802302	10.046405
Н	15.619544	5.430782	10.430663
С	20.452985	7.847845	15.589201
Н	21.231200	7.856093	15.079941
С	19.432555	6.965731	3.587982
Н	20.050517	7.329603	4.179884
С	18.077729	6.241238	5.494868
С	16.709211	8.032325	19.189096
Н	17.452078	8.204917	19.721406
С	16.617737	5.669419	8.696098
Н	16.021086	5.188787	8.168747
С	16.721304	6.924028	13.273677
С	20.525095	8.088871	16.945880
Н	21.348283	8.248768	17.348035
С	17.746575	6.249720	8.111260
С	18.293612	6.321109	4.083889

С	14.345063	7.714255	18.935324
Н	13.489557	7.660749	19.296478
С	15.442614	7.986382	19.753709
Н	15.327992	8.135217	20.664404
С	19.361413	8.091698	17.711349
Н	19.400953	8.265407	18.624095
С	14.545587	7.526947	17.592498
Н	13.813770	7.354964	17.044923

S5. Photophysical data

Table S5. Photophysical properties of **1** and **2** and their co-crystals with X-^FArenes in the solid state at RT.

Compound	λ _{em} , nm	$arPsi_{ m em}$, %	$ au_{\rm obs},\mu s$
1 ^a	481, 517, 549	4	0.9
$1 \cdot IC_6 F_5{}^b$	478, 504, 513, 544sh	7	1.0
$1 \cdot (o - Br_2 C_6 F_4)^c$	484, 517, 549sh	9	1.3
2 ^a	485, 519, 546sh	<1	0.4
$2 \cdot (o - I_2 C_6 F_4)^a$	486, 520, 552sh	<1	0.5

^a Excitation at 410 nm. ^b Excitation at 360 nm. ^c Excitation at 392 nm. $2 \cdot (BrC_6F_5)$ is not emissive at RT.

Figure S18. Normalized solid-state emission spectra of 2 and $2 \cdot (o-Br_2C_6F_4)$ at 298 K.