Supporting Information:

Theoretical study on catalytic degradation of sulfacetamide on anatase TiO_2 (001) and (101) surface

Kai Li^a, Jing Tang^{a, b}, Yang He^{a, b}, Jianmin Guo^{c*}, Laicai Li^{a*}

^a College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China.

^bCollege of Pharmacy, Southwestern Medical University, Luzhou, 646000, China.

^c College of Basic Medical, Southwestern Medical University, Luzhou, 646000, China.

E-mail: guojm63@163.com, lilcmail@163.com

Table of Content

1. Figures

- **1.1. Figure S1.** Energy barrier diagrams of (001) and (101) surface path1 in vacuum calculated using PBE+U+D3 method.
- **1.2. Figure S2.** Energy barrier diagrams of (001) and (101) surface path2~4 in vacuum calculated using PBE+U+D3 method.
- **1.3. Figure S3.** Energy barrier diagrams of (001) and (101) surface path5~6 in vacuum calculated using PBE+U+D3 method.
- **1.4. Figure S4.** The configuration of reactants, transition states and products involved in the path1 process on (001) surface.
- **1.5. Figure S5.** The configuration of reactants, transition states and products involved in the path2 process on (001) surface.
- **1.6. Figure S6.** The configuration of reactants, transition states and products involved in the path3 process on (001) surface.
- **1.7. Figure S7.** The configuration of reactants, transition states and products involved in the path4 process on (001) surface.
- **1.8. Figure S8.** The configuration of reactants, transition states and products involved in the path5 process on (001) surface.
- **1.9. Figure S9.** The configuration of reactants, transition states and products involved in the path6 process on (001) surface.
- **1.10. Figure S10.** The configuration of reactants, transition states and products involved in the path1 process on (101) surface.
- **1.11. Figure S11.** The configuration of reactants, transition states and products involved in the path2 process on (101) surface.
- **1.12. Figure S12.** The configuration of reactants, transition states and products involved in the path3 process on (101) surface.
- **1.13. Figure S13.** The configuration of reactants, transition states and products involved in the path4 process on (101) surface.
- **1.14. Figure S14.** The configuration of reactants, transition states and products involved in the path5 process on (101) surface.
- **1.15. Figure S15.** The configuration of reactants, transition states and products involved in the path6 process on (101) surface.

- **1.16. Figure S16.** Energy barrier diagrams of path1 of (001) and (101) surfaces in vacuum.
- **1.17. Figure S17.** Energy barrier diagrams of path2~4 of (001) and (101) surfaces in vacuum.
- **1.18. Figure S18.** Energy barrier diagrams of path5~6 of (001) and (101) surface in vacuum.

2. Tables

- **2.1. Table S1.** The relative energies in the process of different SAC degradation on TiO₂ (001) surface reaction paths calculated at PBE+U+D3 level and corrected using more accurate HSE06+D3 method.
- **2.2. Table S2.** The relative energies in the process of different SAC degradation on TiO₂ (101) surface reaction paths calculated at PBE+U+D3 level and corrected using more accurate HSE06+D3 method.
- **2.3. Table S3.** The adsorption energies of SAC adsorbed on TiO₂ surfaces in vacuum calculated using PBE+U+D3 method.

1. Figures

Figure S1. Energy barrier diagrams of (001) and (101) surface path1 in vacuum calculated using PBE+U+D3 method.

Figure S2. Energy barrier diagrams of (001) and (101) surface path2~4 in vacuum calculated using PBE+U+D3 method.

Figure S3. Energy barrier diagrams of (001) and (101) surface path5~6 in vacuum calculated using PBE+U+D3 method.

Figure S4. The configuration of reactants, transition states and products involved in the path1 process on (001) surface.

Figure S5. The configuration of reactants, transition states and products involved in the path2 process on (001) surface.

Figure S6. The configuration of reactants, transition states and products involved in the path3 process on (001) surface.

Figure S7. The configuration of reactants, transition states and products involved in the path4 process on (001) surface.

Figure S8. The configuration of reactants, transition states and products involved in the path5 process on (001) surface.

Figure S9. The configuration of reactants, transition states and products involved in the path6 process on (001) surface.

Figure S10. The configuration of reactants, transition states and products involved in the path1 process on (101) surface.

Figure S11. The configuration of reactants, transition states and products involved in the path2 process on (101) surface.

Figure S12. The configuration of reactants, transition states and products involved in the path3 process on (101) surface.

Figure S13. The configuration of reactants, transition states and products involved in the path4 process on (101) surface.

Figure S14. The configuration of reactants, transition states and products involved in the path5 process on (101) surface.

Figure S15. The configuration of reactants, transition states and products involved in the path6 process on (101) surface.

2. Tables

Table S1. The relative energies in the process of different SAC degradation on TiO₂ (001) surface reaction paths calculated at PBE+U+D3 level and corrected using more accurate HSE06+D3 method.

Pathway	Intermediate and transition	ΔEpbe+u+d3	ΔEhse06+d3
	states	Kcal/mol	Kcal/mol
	0-R1	0.0	0.0
	0-TS1	4.1	7.7
	0-P1+0-R1-1	-20.0	-4.5
	0-TS1-1	21.8	30.9
0-path1	SO ₂ +0-R1-2	-24.0	-22.0
	0-TS1-2	26.5	24.6
	0-P1-2	-12.0	-60.4
	0-TS1-3	29.3	10.3
	0-P1-3	-28.0	-90.7
	0-R2	0.0	0
0-path2	0-TS2	39.1	41.1
	0-P2+·OH	-80.9	-40.7
	0-R3	0.0	0.0
0-path3	0-TS3	15.6	26.1
	0-P3+·OH	-55.1	-40.1
	0-R4	0.0	0.0
0-path4	0-TS4	34.9	40.5
	$0-P4+\cdot NH_2$	-20.9	23.3
	0-R5	0.0	0.0
0-path5	0-TS5	56.7	77.5
	$0-P5+\cdot NH_2$	-76.7	-8.5
	0-R6	0.0	0.0
0-path6	0-TS6	17.5	14.6
	0-P6+NH ₂ OH	-14.7	1.3

Pathway	Intermediate and transition	ΔE_{PBE}	ΔE_{XC} -functional
	states	Kcal/mol	Kcal/mol
	1-R1	0.0	0.0
	1-TS1	31.9	39.2
	1-P1+1-R1-1	-0.8	1.2
	1-TS1-1	25.3	29.7
1-path1	SO ₂ +1-R1-2	12.1	22.1
ľ	1-TS1-2	26.7	18.3
	1-P1-2	-34.5	-103.0
	1-TS1-3	26.7	22.0
	1-P1-3	11.9	9.5
	1-R2	0.0	0.0
1-path2	1-TS2	37.7	37.0
	1-P2+·OH	-68.6	-31.3
	1-R3	0.0	0.0
1-path3	1-TS3	27.3	36.9
	1-P3+·OH	-60.7	-28.8
	1-R4	0.0	0.0
1-path4	1-TS4	25.5	23.4
	$1-P4+\cdot NH_2$	-16.9	16.5
	1-R5	0.0	0.0
1-path5	1-TS5	45.8	56.8
	$1-P5+\cdot NH_2$	-77.0	-27.0
	1-R6	0.0	0.0
1-path6	1-TS6	64.9	90.8
	$1-P6+NH_2OH$	-49.9	25.1

Table S2. The relative energies in the process of different SAC degradation on TiO₂ (101) surface reaction paths calculated at PBE+U+D3 level and corrected using more accurate HSE06+D3 method.

TiO ₂ (001)		TiO	TiO ₂ (101)	
Structures	E _{ads} (ev)	Structures	E _{ads} (ev)	
CA0	-1.416	CA1	-0.973	
CB0	-4.153	CB1	-1.445	
CC0	-1.662	CC1	-0.726	
CD0	-1.812	CD1	-0.682	
CE0	-1.552	CE1	-0.912	
CF0	-3.972	CF1	-0.861	

Table S3. The adsorption energies of SAC adsorbed on TiO2 surfaces in vacuumcalculated using PBE+U+D3 method.