Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Novel Approach for the Synthesis of C₆₀ Fullerenes Containing Strained 1,2-dimethylenebicyclo[2,2,0]hexane Fragments

Airat R. Tuktarov,*^a Nuri M. Chobanov, Ilfir R. Ramazanov, Arthur R. Tulyabaev, Arslan R. Akhmetov, Dim I. Galimov and Usein M. Dzhemilev

^a Institute of Petrochemistry and Catalysis, Russian Academy of Sciences

E-mail: tuktarovar@gmail.com

Table of Contents

1.	Figures	3
	Figure S1	3
	Figure S2	10
	Figure S3	18
	Figure S4	18
	Figure S5	19
	Figure S6	19
	Figure S7	20
	Figure S8	20
	Figure S9	21
	Figure S10	21
2.	Experimental	22
3.	Copies of MALDI, ¹ H, ¹³ C, HSQC, HMBC spectra	25

1. Figures

Reaction coordinate

Figure S1. Reaction profile for the rearrangement stage on the example of *N*,*N*-dimethyl-3-phenylprop-2-yn-1-amine with dimethoxydimethyltitanium adduct (B3LYP/6-31G(d), 373.15 K).

Cartesian coordinates of optimized structures **A-D** and the number of imaginary frequencies:

N,*N*-Dimethyl-3-phenylprop-2-yn-1-amine with dimethoxydimethyltitanium adduct (A)

С	-0.273126	-0.183709	0.204910	
С	-1.351831	-0.995610	0.241504	
С	-0.330116	1.309089	-0.040060	
N	0.858898	1.562819	-0.913136	
Ti	1.875417	-0.330807	0.217119	
С	2.029149	-1.925739	1.594753	
С	-1.233799	-2.502543	0.333222	
0	2.675498	0.885596	1.295246	
0	2.676751	-1.053716	-1.216073	
Η	-1.696813	-2.880593	1.255043	
Η	-0.190459	-2.818406	0.314610	
Η	-1.754800	-2.994815	-0.498410	
Η	-1.255314	1.695531	-0.502339	
Η	-0.168860	1.875580	0.886300	
С	1.411990	2.911888	-0.768771	
С	0.541138	1.273923	-2.318611	
С	3.677410	-1.616577	-2.014184	
С	3.678785	1.116005	2.246189	
С	-2.755476	-0.475041	0.195517	
С	-5.404852	0.507294	0.120753	
С	-3.693920	-0.983660	-0.720903	
С	-3.184203	0.529393	1.080388	
С	-4.491898	1.015049	1.045784	
С	-4.998657	-0.494155	-0.763970	
Η	-3.394921	-1.760581	-1.419541	
Н	-2.486395	0.913646	1.819441	

Η	-4.798250	1.787012	1.747475
Η	-5.700706	-0.896534	-1.490178
Η	-6.424090	0.883619	0.092324
Η	3.078399	-1.958775	1.909711
Η	1.776718	-2.905808	1.174087
Η	1.411269	-1.752212	2.483195
Η	3.963938	-2.601788	-1.628858
Η	4.569430	-0.980238	-2.038494
Η	3.314191	-1.740871	-3.040751
Η	3.939154	0.192643	2.776119
Η	4.583069	1.510818	1.769104
Η	3.334012	1.849314	2.984163
Η	0.102818	0.272191	-2.393615
Η	-0.172324	2.001973	-2.721266
Η	1.456687	1.304536	-2.920316
Η	1.706688	3.070685	0.274854
Η	2.302830	3.009949	-1.399647
Η	0.690642	3.681334	-1.066809
The number of imaginary frequencies $= 0$			

Transition state (B)

С	0.559565	-0.152518	-0.063630
С	1.559325	0.740268	-0.084174
С	0.329324	-1.510194	0.030000
N	-1.719907	-1.870916	-0.080379
Ti	-1.796423	0.144906	-0.080483
С	-1.480106	1.228768	-1.890594
Н	-1.792913	2.272927	-1.747324

Н	-2.154601	0.788161	-2.641498
Η	-0.460280	1.224220	-2.284416
С	1.282527	2.228469	-0.183283
0	-1.605210	0.987878	1.523922
0	-3.579572	0.422081	-0.317326
Η	1.855298	2.785074	0.568839
Η	0.224061	2.431867	-0.021326
Η	1.559394	2.635757	-1.165286
Н	0.501351	-2.175762	-0.819350
Η	0.369963	-2.015414	0.997532
С	-2.106902	-2.659374	1.079275
Η	-1.524625	-3.594225	1.147158
Η	-3.171380	-2.931083	1.029419
Η	-1.945785	-2.085959	1.997438
С	-1.931355	-2.570426	-1.340472
Н	-1.617326	-1.943485	-2.182625
Η	-2.994192	-2.814786	-1.477852
Η	-1.355777	-3.510348	-1.384649
С	-4.612751	1.198100	-0.852269
Η	-4.324678	1.614076	-1.828488
Η	-4.863840	2.032970	-0.181778
Η	-5.515383	0.586754	-0.988307
С	-2.485344	1.592019	2.439992
Η	-2.297174	1.201301	3.449602
Н	-3.534275	1.395377	2.176959
Н	-2.325121	2.678766	2.461858
С	2.995888	0.330551	-0.023232
С	5.731355	-0.418569	0.049504

С	4.014534	1.227487	-0.401212
С	3.396516	-0.949494	0.403027
С	4.738191	-1.319031	0.443380
С	5.359014	0.857004	-0.373042
Н	3.755337	2.226798	-0.733445
Н	2.645825	-1.663796	0.726430
Н	5.010140	-2.314278	0.786947
Н	6.117395	1.572529	-0.681953
Н	6.778815	-0.707001	0.076988
The number of imaginary frequencies $= 1$			

Buta-2,3-dien-2-ylbenzene (C)

Η	-3.577717	-1.808487	0.926092
С	-3.173506	-1.399739	0.000000
С	-2.254472	-0.471263	0.000000
Н	-3.577717	-1.808487	-0.926092
С	-1.336860	0.475448	0.000000
С	-1.779142	1.928553	0.000000
Н	-1.402110	2.457034	0.884586
Н	-2.869218	1.998019	0.000000
Н	-1.402110	2.457034	-0.884586
С	0.117483	0.156723	0.000000
С	2.877171	-0.442943	0.000000
С	1.080584	1.178892	0.000000
С	0.570797	-1.176011	0.000000
С	1.929214	-1.471395	0.000000
С	2.444861	0.881700	0.000000
Н	0.770067	2.218767	0.000000

Η	-0.157723	-1.981954	0.000000
Η	2.252236	-2.509515	0.000000
Н	3.168599	1.692917	0.000000
Η	3.938917	-0.675121	0.000000

The number of imaginary frequencies = 0

(Dimethylamino)dimethoxy(methyl)titanium (D)

Ν	-1.639090	-0.024613	0.254645
Ti	0.187715	-0.001426	-0.262321
С	0.159022	0.024950	-2.369724
Η	-0.337077	-0.869113	-2.770140
Н	1.188452	0.049403	-2.755820
Н	-0.370239	0.910595	-2.745843
0	0.988969	-1.536579	0.192135
0	0.955620	1.539834	0.223922
С	1.902547	-2.453132	0.721835
Н	1.395783	-3.399081	0.955691
Н	2.357311	-2.067178	1.644687
Н	2.703007	-2.660729	-0.000945
С	1.822872	2.504292	0.744196
Н	1.410452	2.930279	1.669230
Н	1.961682	3.318353	0.020351
Н	2.806806	2.070548	0.970284
С	-2.395449	-1.241957	0.499446
Н	-3.253406	-1.326589	-0.187696
Н	-2.792409	-1.268336	1.528573
Η	-1.759117	-2.120911	0.359579
С	-2.423983	1.180502	0.468965

The number of imaginary frequencies $= 0$			
Η	-2.819422	1.224447	1.498048
Н	-1.809458	2.070566	0.303625
Η	-3.285225	1.227431	-0.217827

Figure S2. Frontier HOMO and LUMO of compounds **2a-d** calculated at the PBEPBE/6-311G(d,p) level of theory.

		2a	
6	-0.329526000	-3.128721000	-1.087956000
6	-1.606232000	-3.535755000	-0.520009000
6	-1.819891000	-3.445429000	0.860738000
6	-0.765199000	-2.945595000	1.730093000
6	0.461570000	-2.537279000	1.180733000
6	0.683334000	-2.629896000	-0.251772000
6	-2.652059000	-3.133761000	-1.446157000
6	-3.087165000	-2.948410000	1.370168000
6	-1.374342000	-2.146333000	2.767723000
6	1.146180000	-1.366198000	1.662607000
6	1.500769000	-1.513412000	-0.650712000
6	-0.583370000	-2.483279000	-2.355097000
6	0.549507000	-0.586928000	2.642126000
6	-0.726830000	-0.977800000	3.203646000
6	0.563590000	0.890881000	2.550122000
6	-1.501496000	0.224283000	3.458630000
6	-3.874511000	-2.652546000	-0.956217000
6	-2.809532000	-2.144207000	2.551011000
6	-0.706200000	1.371276000	3.054928000
6	-3.554466000	-0.981399000	2.796114000
6	-4.096018000	-2.557835000	0.478675000
6	2.042729000	-0.793231000	0.575924000
6	1.239023000	-0.882610000	-1.854504000
6	-4.509061000	-1.506447000	-1.584289000
6	0.187227000	-1.367242000	-2.721948000
6	-2.017271000	-2.482192000	-2.582309000
6	1.258805000	0.593152000	-1.948476000
6	-0.450193000	-0.222280000	-3.347582000
6	-2.631121000	-1.374114000	-3.185368000
6	-2.888879000	0.223920000	3.267556000
6	2.072009000	0.809624000	0.484603000

Cartesian coordinates

6	-4.867782000	-1.353751000	0.735816000
6	0.209088000	0.981277000	-2.870624000
6	-1.830772000	-0.225607000	-3.584246000
6	-3.897626000	-0.880021000	-2.680030000
6	-3.885331000	0.574413000	-2.773748000
6	-5.124265000	-0.703812000	-0.539341000
6	-4.600870000	-0.580762000	1.875238000
6	-4.588092000	0.873386000	1.781509000
6	-2.610495000	0.977636000	-3.336217000
6	-1.976355000	2.142111000	-2.878846000
6	-2.598756000	2.944994000	-1.836765000
6	-0.542966000	2.146070000	-2.650174000
6	1.176046000	1.530425000	1.482963000
6	-4.842384000	1.498781000	0.552217000
6	1.540790000	1.370658000	-0.835870000
6	0.726486000	2.534743000	-0.581685000
6	-5.111624000	0.695058000	-0.629283000
6	-3 534727000	1 370182000	2 645425000
6	-2 770557000	2 480402000	2 256707000
6	-4 484271000	1 346235000	-1 767636000
6	-3 828939000	2 552677000	-1 290639000
6	-0 277200000	2.942475000	-1 474619000
6	-1 545425000	3 442334000	-0.966725000
6	-4 050151000	2 646452000	0 144706000
6	0.506292000	2 635211000	0.850381000
6	-1 334442000	2 485340000	2 472102000
6	-3 035034000	3 130590000	0.981596000
6	-0 713394000	3 132546000	1 340222000
6	-1 759521000	3 534934000	0.413649000
6	3 650654000	0 797908000	0.747616000
6	3 991834000	0.765422000	2 246462000
6	4 311606000	1 743935000	3 105853000
1	4 589877000	1 524540000	4 139306000
1	4 322583000	2 789971000	2 792145000
6	3 639602000	-0.819154000	0.813609000
6	3 937164000	-0 704131000	2 311770000
6	4 008848000	-1 580334000	3 327610000
1	3 869195000	-2.653267000	3 187741000
1	4 184415000	-1 234010000	4 349246000
6	4 566356000	1 664864000	-0.073727000
6	6 369761000	3 360633000	-1 441817000
6	4 184652000	2 961183000	-0 466787000
6	5 881961000	1 246045000	-0 353937000
6	6 768983000	2 081372000	-1 038216000
6	5.076662000	3 799790000	-1 144777000
1	3 186356000	3 333212000	-0 233238000
1	6 215571000	0 258216000	-0.033017000
1	7 780627000	1 729210000	-1 253541000
1	4 754674000	4 801493000	-1 439235000
1	7 064506000	4 012398000	-1 976409000
6	4 457685000	-1 717488000	-0.073346000
6	5 960813000	-3 403040000	-1 776954000
~			

6	4.515419000	-1.481381000	-1.463126000
6	5.184060000	-2.805476000	0.442549000
6	5.924147000	-3.642236000	-0.400358000
6	5.257220000	-2.313953000	-2.303930000
1	3.994822000	-0.622813000	-1.890255000
1	5.189119000	-2.992178000	1.516566000
1	6.478491000	-4.481876000	0.025705000
1	5.290325000	-2.105105000	-3.375698000
1	6.540278000	-4.054848000	-2.434764000
		2b	
6	-0.492716000	-3.241549000	-0.615830000
6	-1.767348000	-3.537430000	0.018375000
6	-1.960325000	-3.235258000	1.372261000
6	-0.886674000	-2.630252000	2.146864000
6	0.340751000	-2.331968000	1.533953000
6	0.533962000	-2.638016000	0.127902000
6	-2.816726000	-3.259275000	-0.948218000
6	-3.213065000	-2.645995000	1.814329000
6	-1.470260000	-1.674413000	3.060135000
6	1.059310000	-1.117517000	1.833765000
6	1.352843000	-1.604940000	-0.444390000
6	-0.749265000	-2.787428000	-1.963383000
6	0.480922000	-0.187335000	2.684939000
6	-0.797369000	-0.466816000	3.311009000
6	0.511333000	1.259000000	2.366991000
6	-1.551131000	0.772802000	3.386636000
6	-4.024706000	-2.688880000	-0.523381000
6	-2.908628000	-1.679372000	2.859303000
6	-0.743610000	1.831217000	2.807265000
6	-3.631888000	-0.479960000	2.931966000
6	-4.227518000	-2.377723000	0.883951000
6	1.931917000	-0.726735000	0.649476000
6	1.106967000	-1.162570000	-1.730450000
6	-4.647743000	-1.638153000	-1.310492000
6	0.035407000	-1.753989000	-2.502801000
6	-2.185007000	-2.795311000	-2.174958000
6	1.152858000	0.282709000	-2.041218000
6	-0.589550000	-0.703655000	-3.285907000
6	-2.787325000	-1.779537000	-2.931981000
6	-2.940841000	0.769433000	3.210828000
6	1.995908000	0.846371000	0.328828000
6	-4.975908000	-1.134300000	0.963933000
6	0.097381000	0.545360000	-3.001833000
6	-1.9/312/000	-0.718273000	-3.505490000
6	-4.039922000	-1.193531000	-2.493730000
6	-4.004907/000	0.229907000	-2.804234000
6	-5.236627000	-0.6/7612000	-0.391595000
6	-4.683658000	-0.2039/4000	1.9/1//0000
6	-4.648495000	1.21960/000	1.001457000
6	-2./30550000	0.521475000	-3.433282000
6	-2.0/1441000	1.729396000	-3.161825000

6	-2.667457000	2.689383000	-2.244539000
6	-0.634451000	1.742335000	-2.950922000
6	1.116573000	1.721267000	1.208613000
6	-4.907179000	1.658356000	0.354754000
6	1.470010000	1.217200000	-1.064452000
6	0.669569000	2,416295000	-0.978916000
6	-5 202609000	0 691616000	-0 690199000
6	-3 575489000	1 821299000	2 430329000
6	-2 798684000	2 846078000	1 871118000
6	-4 577816000	1 153986000	-1 918804000
6	-3 897716000	2 406170000	-1 634202000
6	-0 340764000	2 701022000	-1 911146000
6	-1 595805000	3 292915000	-1 470843000
6	-4 102353000	2 718754000	-0 228239000
6	0.458483000	2.710754000	0 /23212000
6	-1 360622000	2.727372000	2 060103000
6	3.068674000	2.033730000	0.515800000
6	-5.008074000	3.304393000	0.313890000
6	-0.744111000	3.514004000	0.040870000
6	-1./9403/000	5.595695000	-0.118011000
6	3.338949000	0.814550000	0.034/01000
0	2 2022 47000	0.829439000	2.133348000
0	3.89834/000	1.838143000	3.033331000
1	4.11540/000	1.058430000	4.088865000
I C	3.727920000	2.8/1003000	2.722876000
6	3.544644000	-0./92165000	0.765210000
6	4.022787000	-0.630190000	2.21194/000
0	4.535484000	-1.439/2/000	3.151//2000
1	4.64115/000	-2.512696000	3.004877000
l	4.8/1409000	-1.021056000	4.1039/0000
6	4.590164000	1.624233000	-0.113160000
6	6.628162000	3.188654000	-1.335571000
6	4.381/62000	2.951/92000	-0.511086000
6	5.899027000	1.12/646000	-0.2918/5000
6	6.901149000	1.88/631000	-0.898132000
6	5.357320000	3.729315000	-1.131/42000
1	6.128930000	0.120535000	0.059311000
1	7.898101000	1.461405000	-1.025374000
1	5.105945000	4.749917000	-1.424777000
l	7.402653000	3.788163000	-1.818021000
6	4.145274000	-1.790951000	-0.189920000
6	5.107288000	-3.761459000	-1.999714000
6	4.583027000	-1.451030000	-1.484570000
6	4.155371000	-3.160247000	0.120902000
6	4.635023000	-4.141509000	-0.740330000
6	5.066107000	-2.415411000	-2.374620000
1	4.533672000	-0.409831000	-1.802537000
1	4.610409000	-5.183947000	-0.418966000
1	5.402317000	-2.110198000	-3.367332000
1	5.485394000	-4.519501000	-2.688571000
9	3.182559000	3.545452000	-0.249186000
9	3.620738000	-3.568352000	1.309422000

6	-0.437195000	-2.988401000	-1.431551000
6	-1.710205000	-3.484309000	-0.930012000
6	-1.938049000	-3.561349000	0.449191000
6	-0.902067000	-3.145149000	1.382157000
6	0.320563000	-2.651017000	0.898304000
6	0.557937000	-2.570626000	-0.532275000
6	-2.756088000	-2.998006000	-1.815159000
6	-3.219975000	-3.153101000	0.999668000
6	-1.536498000	-2.486022000	2.499869000
6	0.975062000	-1.531814000	1.522113000
6	1.356884000	-1.400346000	-0.789889000
6	-0.694003000	-2.203493000	-2.616489000
6	0.354103000	-0.884199000	2.578931000
6	-0.917839000	-1.363825000	3.077686000
6	0.339140000	0.594352000	2.659219000
6	-1.719727000	-0.215107000	3.461496000
6	-3.992578000	-2.602090000	-1.285916000
6	-2.969957000	-2,487542000	2.269911000
6	-0.945255000	0.986676000	3.202218000
6	-3.741138000	-1.375620000	2.639580000
6	-4.228200000	-2.680734000	0.147722000
6	1.869161000	-0.817728000	0.521110000
6	1.090304000	-0.636782000	-1.913520000
6	-4.645575000	-1.402658000	-1.782841000
6	0.055942000	-1.037646000	-2.843082000
6	-2.125029000	-2.204461000	-2.859086000
6	1.079051000	0.839944000	-1.834730000
6	-0.599456000	0.159808000	-3.338486000
6	-2.756666000	-1.046336000	-3.335856000
6	-3.104966000	-0.220868000	3.256053000
6	1.867013000	0.786063000	0.614068000
6	-5.027129000	-1.530608000	0.534839000
6	0.030377000	1.312197000	-2.717430000
6	-1.977468000	0.156744000	-3.589113000
6	-4.038181000	-0.640319000	-2.791139000
6	-4.055350000	0.815053000	-2.713690000
6	-5.286170000	-0.740560000	-0.658126000
6	-4.786906000	-0.891208000	1.759592000
6	-4.804306000	0.563801000	1.837296000
6	-2.784869000	1.306939000	-3.211397000
6	-2.179487000	2.422769000	-2.614143000
6	-2.827460000	3.084620000	-1.491603000
6	-0.748114000	2.428313000	-2.371205000
6	0.947966000	1.367206000	1.681743000
6	-5.061370000	1.323584000	0.686772000
6	1.333145000	1.487007000	-0.635795000
6	0.494276000	2.598271000	-0.256198000
6	-5.303337000	0.659114000	-0.583710000
6	-3.768879000	0.977441000	2.764673000
6	-3.024942000	2.139865000	2.515384000
6	-4.679179000	1.451709000	-1.630917000

6	-4.053670000	2.606081000	-1.008922000
6	-0.509989000	3.086486000	-1.107375000
6	-1.792672000	3.498251000	-0.558240000
6	-4.289883000	2.526572000	0.424704000
6	0.260390000	2.525336000	1.175383000
6	-1.591665000	2.148143000	2.746701000
6	-3.292250000	2.929953000	1.322989000
6	-0.974108000	2.936679000	1.706307000
6	-2.020512000	3.423402000	0.820952000
6	3.444055000	0.772314000	0.885787000
6	3.775711000	0.592864000	2.376520000
6	4.071976000	1.484587000	3.332992000
1	4.342639000	1.166834000	4.342518000
1	4.069059000	2.556903000	3.126083000
6	3.459040000	-0.841226000	0.784562000
6	3.737919000	-0.876030000	2.290921000
6	3.809762000	-1.850900000	3.212380000
1	3.681912000	-2.905491000	2.963823000
1	3.972287000	-1.609480000	4.265781000
6	4.361413000	1.722882000	0.165864000
6	6.182084000	3.561147000	-0.995106000
6	3.958740000	3.037149000	-0.129172000
6	5.693284000	1.350272000	-0.105945000
6	6.584411000	2.257642000	-0.684164000
6	4.871003000	3.923006000	-0.700422000
1	2.953662000	3.399562000	0.084496000
1	6.036274000	0.345246000	0.140553000
1	7.609914000	1.946635000	-0.894933000
1	6.858823000	4.287602000	-1.447055000
6	4.305562000	-1.635071000	-0.173068000
6	5.864112000	-3.140218000	-2.003311000
6	4.387473000	-1.266627000	-1.532447000
6	5.028583000	-2.759358000	0.259390000
6	5.784632000	-3.486519000	-0.657633000
6	5.156303000	-2.011260000	-2.430191000
1	3.866803000	-0.377004000	-1.887516000
1	5.032387000	-3.071535000	1.302759000
1	5.210869000	-1.705863000	-3.477164000
1	6.470808000	-3.738547000	-2.684489000
9	6 471654000	-4 570382000	-0 212360000
9	4 457292000	5 187547000	-0 973084000
-		0.10,01,000	0.772001000
		2d	
6	-0.782648000	3.316806000	0.048890000
6	-2.038857000	3.520411000	-0.655859000
6	-2.218497000	2.978652000	-1.934512000
6	-1.149015000	2.216958000	-2.561960000
6	0.060191000	2.008762000	-1.877342000
6	0.243979000	2.566765000	-0.548401000
6	-3.112025000	3.451866000	0.322432000
6	-3.478843000	2.346538000	-2.286855000
6	-1.742063000	1.122556000	-3.294687000

6	0.745794000	0.743135000	-1.929584000
6	1.035045000	1.640174000	0.219657000
6	-1.074224000	3.127668000	1.451053000
6	0.159222000	-0.314553000	-2.609051000
6	-1.098473000	-0.126831000	-3.302099000
6	0.150270000	-1.678906000	-2.032098000
6	-1.881907000	-1.343326000	-3.166658000
6	-4.327432000	2.839847000	-0.015048000
6	-3.182340000	1.196730000	-3.128476000
6	-1.111247000	-2.295572000	-2.384928000
6	-3.935138000	0.020932000	-2.994995000
6	-4.513993000	2.276874000	-1.343981000
6	1.605061000	0.557218000	-0.687603000
6	0.742410000	1.446212000	1.559626000
6	-4.990651000	1.966805000	0.938636000
6	-0.326352000	2.194007000	2.188195000
6	-2.513086000	3.208437000	1.626987000
6	0.736124000	0.084110000	2.135772000
6	-0.993782000	1.322956000	3.139683000
6	-3.155585000	2.364460000	2.544975000
6	-3.273238000	-1.274710000	-3.023532000
6	1.596508000	-0.919140000	-0.067872000
6	-5.293135000	1.058014000	-1.209625000
6	-0.338564000	0.026553000	3.105574000
6	-2.379683000	1.408939000	3.322430000
6	-4.414870000	1.735324000	2.196186000
6	-4.422585000	0.393245000	2.764330000
6	-5.589098000	0.866397000	0.200662000
6	-5.007701000	-0.048926000	-2.021513000
6	-5.016871000	-1.390647000	-1.453499000
6	-3.167888000	0.193428000	3.463605000
6	-2.537794000	-1.059411000	3.434165000
6	-3.144056000	-2.159074000	2.698516000
6	-1.098944000	-1.144215000	3.260476000
6	0.724949000	-1.929601000	-0.795355000
6	-5.309665000	-1.574075000	-0.094140000
6	1.028727000	-1.017140000	1.346303000
6	0.218877000	-2.202779000	1.473114000
6	-5.598047000	-0.424292000	0.747721000
6	-3.948724000	-2.148467000	-2.075688000
6	-3.208178000	-3.070091000	-1.320801000
6	-5.007114000	-0.665516000	2.054269000
6	-4.355800000	-1.964491000	2.020493000
6	-0.813869000	-2.285679000	2.422304000
6	-2.075584000	-2.920144000	2.071743000
6	-4.542713000	-2.526228000	0.691220000
6	0.030678000	-2.766307000	0.147169000
6	-1.767583000	-3.152202000	-1.483965000
6	-3.512264000	-3.262190000	0.089473000
6	-1.182251000	-3.393294000	-0.185414000
6	-2.256427000	-3.462012000	0.793430000
6	3.187217000	-1.002371000	-0.238561000

6	3.544921000	-1.485245000	-1.646560000
6	3.709695000	-2.702862000	-2.187486000
1	3.950141000	-2.825286000	-3.246401000
1	3.603467000	-3.614532000	-1.595343000
6	3.205890000	0.496248000	-0.833510000
6	3.578694000	-0.112082000	-2.184651000
6	3.810415000	0.421332000	-3.394811000
1	3.777749000	1.500771000	-3.558868000
1	4.054201000	-0.206029000	-4.255639000
6	3.907606000	-1.572844000	0.988137000
6	3.897682000	1.752545000	-0.310759000
1	3.550412000	2.579230000	-0.964230000
1	3.468772000	1.989056000	0.677167000
6	5.410322000	1.866227000	-0.188386000
6	6.336413000	1.248994000	-1.045051000
6	5.907602000	2.719548000	0.815122000
6	7.709198000	1.480285000	-0.900412000
6	7.277166000	2.957963000	0.957183000
6	8.187446000	2.337264000	0.094966000
1	5.991417000	0.579330000	-1.831996000
1	5.203311000	3.210442000	1.494316000
1	8.409657000	0.980296000	-1.573638000
1	7.632519000	3.628107000	1.744050000
1	9.259863000	2.516697000	0.201542000
1	3.545054000	-1.030909000	1.877114000
1	3.536249000	-2.608915000	1.106125000
6	5.423783000	-1.591412000	1.021873000
6	6.173728000	-2.518821000	0.276858000
6	6.114081000	-0.718093000	1.878748000
6	7.568233000	-2.558515000	0.373836000
6	7.507597000	-0.757237000	1.983146000
6	8.240958000	-1.677276000	1.227212000
1	5.661865000	-3.223058000	-0.381487000
1	5.549226000	0.002634000	2.476080000
1	8.130396000	-3.290082000	-0.212045000
1	8.019586000	-0.063212000	2.653199000
1	9.330031000	-1.712175000	1.307412000

Figure S3. Absorption (1) and PL (2) spectra of C_{60} fullerene in film. T = 298 K.

Figure S4. Absorption (1-3) and PL (4) spectra of **PCBM** in film (1, 4) and in CHCl₃ solution (2, 3). [**PCBM**] = 10^{-4} M (2, 3), 1 = 0.1 cm (2) and 1 cm (3). T = 298 K.

Figure S5. Absorption (1-3) and PL (4) spectra of **2a** in film (1, 4) and in CHCl₃ solution (2, 3). $[2a] = 10^{-4} \text{ M} (2, 3), l = 0.1 \text{ cm} (2) \text{ and } 1 \text{ cm} (3). T = 298 \text{ K}.$

Figure S6. Absorption (1-3) and PL (4) spectra of **2b** in film (1, 4) and in CHCl₃ solution (2, 3). $[2b] = 10^{-4} \text{ M} (2, 3), l = 0.1 \text{ cm} (2) \text{ and } 1 \text{ cm} (3). T = 298 \text{ K}.$

Figure S7. Absorption (1-3) and PL (4) spectra of **2c** in film (1, 4) and in CHCl₃ solution (2, 3). $[2c] = 10^{-4} \text{ M} (2, 3), 1 = 0.1 \text{ cm} (2) \text{ and } 1 \text{ cm} (3). T = 298 \text{ K}.$

Figure S8. Absorption (1-3) and PL (4) spectra of **2d** in film (1, 4) and in CHCl₃ solution (2, 3). $[2d] = 10^{-4} \text{ M} (2, 3), l = 0.1 \text{ cm} (2) \text{ and } 1 \text{ cm} (3). T = 298 \text{ K}.$

Figure S9. Evaluation of the optical energy gap E_g^{opt} by the graphical Tauc method from the absorption spectrum of PCBM film.

Figure S10. Evaluation of the optical energy gap E_g^{opt} by the tangent method from the PL spectrum of PCBM film.

2. Experimental

Measurements and materials

All reactions were performed under an argon atmosphere and in anhydrous solvent. The solvents and reagents were dried or refined according to the literature procedures. Commercially available [60]fullerene (99.5% pure, Sigma-Aldrich) was used. The reaction products were analyzied on a HPLC chromatograph Shimadzu SPD-20A (Japan) equipped with the UV detector at 313 or 340 nm. The mixtures were separated on a metal preparative column Cosmosil Buckyprep Waters (250×10 mm) at ~20 °C. Toluene was used as eluent, the flow rate was 3.0 mL•min⁻¹. The ¹H{¹³C} NMR spectra were run on a Bruker Avance-500 spectrometer at 500.17 and 125.78 MHz, respectively. The mixture of CDCl₃ and CS₂ (1:5) was used as a solvent. The mass spectra were obtained on aUltraFlex III TOF/TOF (Bruker Daltonik GmbH, Germany) operating in a linear (TOF) and reflection (TOF/TOF) positive and negative ion modes. S₈ and DCTB (trans-2-[3-(4-tret-butylphenyl)-2-methyl-2-propenyliden]malononitrile) are used as a matrix. For the application on a metal target, the toluene solutions of the samples were used.

The photoluminescence (PL) and PL excitation spectra were recorded using a Horiba FluoroLog-3 spectrofluorimeter (model FL-3-22). All spectra were scaled by introducing the corrections for the Xe-lamp (450 W), detector (PMT Hamamatsu R928), and diffraction gratings using special software FluorEssence 3.5. The PL of films were recorded using a solid sample holder at an angle of 15 or 60 degrees to the exciting light.

As is known, the PL spectra of fullerenes and its derivatives usually contain one or several broad structureless bands with no vibronic structure. Therefore, we used the tangent method to calculate the energies of the radiative S_1 levels of the compounds. This method implies in making tangent to the left part of the PL spectrum curve in coordinates "PL intensity – photon energy (eV)". The tangent is applied in the point attributed to the half of the maximal intensity. In this mode, the energy of the S_1 level, which is equal to the electronic transition energy $S_1 \rightarrow S_0$ and accordingly to the optical energy gap E_g^{opt} , corresponds to the intersection of the tangent with the abscissa axis.

UV-visible absorption spectra were recorded in the range 200–800 nm with Shimadzu UV-1800 spectrophotometer. The E_g^{opt} were estimated from the optical absorption edge in thin films and using known Tauc relation: $Ahv = (hv - E_g^{opt})^n$, were $n = \frac{1}{2}$ for allowed direct, A absorbance. The films were prepared by deposition of the substance on a quartz substrate followed by solvent CHCl₃ evaporation.

General procedure for the synthesis of 2,3-dimethylenebicyclo[2.2.0]hexane C_{60} derivatives.

A 50 mL glass reactor was charged with C_{60} (80 mg, 0.1112 mmol) in dry chlorobenzene (12 mL), aminomethylated alkyne (0.3336 mmol) and Ti(O*i*-Pr)₄ (0.08 mL, 0.278 mmol) under a dried argon atmosphere at room temperature. The resulting solution was heated to 80 °C (oil bath), and EtMgBr (1 M solution in diethyl ether, 1.112mmol) was added dropwise during 2—3 min. The reaction mixture stirred for 30 min and was quenched with an 8-10 % (aq.) solution of HCl. The layers were separated and the organic layer passed through a column with small amount of silica gel. The reaction products **2a-d**, and the starting fullerene C_{60} were separated by the HPLC, eluent was toluene. The samples were washed with hexane and Et₂O before NMR.

1',4'-Diphenyl-2',3'-Dimethylenebicyclo[2.2.0]hexano[5',6':1,9](C_{60} - I_h)[**5,6]fullerene** (**2a**). Brown powder (52 mg, 65 % yield). UV (CHCl₃) λ = 256, 316, 431, 695. ¹H NMR (500 MHz, CDCl₃) δ = 7.51 (d, J = 7.0 Hz, 1H, CH (Ph)), 7.25-7.31 (m, 1H, CH (Ph)), 6.24 (s, 2H, CH₂), 5.69 (s, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃) δ = 154.4, 149.8, 147.7, 146.6, 146.3, 145.9, 145.8, 145.6, 145.5, 144.9, 143.2, 142.9, 142.4, 142.3, 141.9, 140.3, 139.1, 135.6, 130.0, 128.3, 127.5, 115.7, 71.0, 30.1. HRMS (MALDI TOF) [M]⁻ calcd. for C₇₈H₁₄ 950.1095; Found 950.1101.

1',4'-Di(o-fluorophenyl)-2',3'--Dimethylenebicyclo[2.2.0]hexano[5',6':1,9](C₆₀-

*I*_h)[5,6]fullerene (2b). Brown powder (41 mg, 51 % yield). UV (CHCl₃) λ = 255, 312, 432, 694. ¹H NMR (500 MHz, CDCl₃) δ = 7.52 (t, *J* = 6.7 Hz, 1H, CH (Ph)), 7.28 (s, 1H, CH (Ph)), 7.05-7.13 (m, 1H, CH (Ph)), 6.31 (s, 2H, CH₂), 5.69 (s, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃) δ = 160.7, 158.7, 154.8, 147.8, 147.6, 146.6, 146.3, 145.9, 145.6, 145.5, 144.8, 143.2, 142.8, 142.4, 142.2, 141.8, 140.1, 137.4, 135.2, 131.3, 129.8, 126.9, 124.0, 116.1, 115.8, 115.6, 69.4, 30.0. HRMS (MALDI TOF) [M]⁻ m/z = calcd. for C₇₈H₁₂F₂ 986.0907; Found 986.0903.

1',4'-Di(m-fluorophenyl)-2',3'-Dimethylenebicyclo[2.2.0]hexano[5',6':1,9](C₆₀-

*I*_h)[5,6]fullerene (2c). Brown powder (46 mg, 57 % yield). UV (CHCl₃) λ = 256, 312, 432, 694. ¹H NMR (500 MHz, CDCl₃) δ = 7.32-7.35 (m, 1H, CH (Ph)), 7.28 (s, 1H, CH (Ph)), 7.22 (d, *J* = 9.4 Hz, 1H, CH (Ph)), 7.00 (s (b), 1H, CH (Ph)), 6.29 (s, 2H, CH₂), 5.70 (s, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃) δ = 163.6, 161.6, 154.1, 149.2, 147.8, 146.6, 146.4, 145.8, 145.7, 145.6, 144.8, 143.2, 142.9, 142.4, 142.3, 141.9, 140.9, 140.8, 140.3, 139.8, 135.5, 130.0, 129.9, 125.7, 116.9, 116.8, 116.1, 114.8, 114.6, 70.8, 30.0. HRMS (MALDI TOF) [M]⁻ m/z = calcd. for C₇₈H₁₂F₂ 986.0907; Found 986.0910.

1',4'-Dibenzyl-2',3'-Dimethylenebicyclo[2.2.0]hexano[5',6':1,9](C₆₀-*I*_h)[5,6]fullerene

(2d). Brown powder (54 mg, 68 % yield). UV (CHCl₃) λ = 256, 311, 433, 696. ¹H NMR (500 MHz, CDCl₃) δ = 7.46 (d, *J* = 7.3 Hz, 1H, CH (Ph)), 7.25-7.28 (m, 1H, CH (Ph)), 7.15-7.18 (m, 1H, CH (Ph)), 5.70 (s, 2H, CH₂), 6.05 (s, 2H, CH₂), 4.35 (s, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃) δ = 154.1, 149.2, 147.6, 146.5, 146.2, 145.8, 145.6, 145.4, 144.7, 143.0, 142.7, 142.3, 141.9, 141.7, 139.9, 138.5, 137.7, 135.5, 130.0, 129.3, 128.6, 126.7, 112.5, 70.2, 38.3, 30.0. HRMS (MALDI TOF) [M]⁻ m/z = calcd. for C₈₀H₁₈ 978.1408; Found 978.1399.

3. Copies of MALDI, ¹H, ¹³C, HSQC, HMBC spectra

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.0 2.0 0.5 ppm 4.5 4.0 3.5 2.5 1.5 1.0

