Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supporting Information for:

Validation of the supramolecular synthon preference through DFT and physicochemical property investigations of pyridyl salts of organo-sulfonates

Arshid A. Ganie,^aThufail M. Ismail,^b P. K. Sajith,^b and Aijaz A. Dar^a*

[a] Dr.Aljaz Ahmad Dar* and Arshid A. Ganie

Department of Chemistry, Inorganic Section, University of Kashmir, Hazratbal, Srinagar, J&K-190006, India

email: aijazpapers@qmail.com/daraijaz@uok.edu.in Phone: +91-9596034885

Phone: +91-9596034885 Orcid: 0000-0002-6180-274X

[b] Dr.P. K. Sajith and Thufail M. Ismail

Department of Chemistry, Farook College, Kozhikode, Kerala, 673 632, India

Chart ESI-1.Bond angles and distances of molecular salts formed from 5-sulfosalicylic acid with different base conformers having direct Sulfonate....Pyridinium interaction.

Table ESI-1.Comparative melting point of compounds and their reactants.

Table ESI-2. Solubility of compounds in different solvents.

Figure ESI-1. FT-IR spectrum of 1.

Figure ESI-2. FT-IR spectrum of 2.

Figure ESI-3. FT-IR spectrum of3.

Figure ESI-4. Centro-symmetric dimer in 1.

Figure ESI-5. Pi-pi interaction in 1.

Figure ESI-6. T4(0)A1 type of infinite water chains formed in 2.

Figure ESI-7. Hexameric water cluster (W6) with cyclic R4 core, highlighted by green bonds, in 2.

Table ESI-3.Bond angles and distances of different Interactions of lattice water molecules in 2.

Table ESI-4.Bond angles and distances of different Interactions of lattice water molecules in 3.

Figure ESI-8. Pie interactions between crystal formersin 3

Figure ESI-9.(a)Hirshfeld surface, (b)Curvedness and (c) Shape index surfaces of 1.

Figure ESI-10. Total and individual figerprint plots of 1.

Figure ESI-11.(a)Hirshfeld surface, (b) Curvedness and (c) Shape index surfaces of 2.

Figure ESI-12. Total and individual figerprint plots of 2.

Figure ESI-13.(a)Hireshfeld surface, (b)Curvedness and (c) Shape index surfaces of 3.

Figure ESI-14. Total and individual figerprint plots of 3.

 Table ESI-5. Hirshfeld surface property information of 1.

Table ESI-6. Percentage of total surface area for close contacts between atoms inside and outside in 1.**Table ESI-7.** Hirshfeld surface property information of 2.

Table ESI-8. Percentage of total surface area for close contacts between atoms inside and outside in 2.

 Table ESI-9. Hireshfeld surface property information of 3.

 Table ESI-10. Percentage of total surface area for close contacts between atoms inside and outside in 3.

 Table ESI-11: Contribution of different interactions in 1, 2 and 3.

Table ESI-12.Calculated interaction energy (IE) for salt and co-crystal and the difference in interaction energy values (Δ IE). All values are kJ/mol.

Table ESI-13. Interaction energy (IE) of various sulfonate-pyridinium salt with methyl pyridine as a monomer.

Table ESI-14. Optimized geometries of various charge assisted sulfonate-pyridinium salt/co-crystals. Selected bond distances in Å.

Table ESI-15. Optimized geometries as well as the corresponding QTAIM topological plots of various charge assisted sulfonate-pyridinium salt keeping methyl pyridine as a monomer

Figure ESI-15. TGA-DTA Thermograms of 1.

Figure ESI-16. TGA-DTA Thermograms of 2.

Figure ESI-17. TGA-DTA Thermograms of 3.

Figure ESI-18. K-M plots of 5-SSA, 4-Ph-Py and 1.

Figure ESI-19.K-M plots of 8-HQSA, 4-Ph-Py and 2.

Figure ESI-20.K-M plots of 4-SA-Sy, 4,4'-BPP and 3.

Table ESI-16. Comparative aqueous solubility of reactants and products.

Table ESI-X. Bifurcated hydrogen bonding interactions reported by us.

Chart ESI-1. Bond angles and distances of molecular salts formed from 5-sulfosalicylic acid with different base conformers having direct Sulfonate-Pyridinium interaction.

S.No.	Molecular Formula	Bond	Bond	Cif Code	Reference
		Distance	Angle		
		N-HO	N-HO		
1)		2.660 Å	178.39°	1038154	1
2)		2.713 Å	161.°46	1882488	2
3)		2.747 Å	160.25°	1882490	2
4)		2.732 Å	172.27°	925161	3
5)	$H_{3}C \xrightarrow{\bigcirc} OH \xrightarrow{\bigcirc} H_{3}C \xrightarrow{\bigcirc} OH \xrightarrow{\bigcirc} H_{3}C \xrightarrow{\bigcirc} OH \xrightarrow{0} $	2.855 Å	161.41°	788504	4
6)	$ \begin{array}{c} OH \\ OH \\ N-HO-S \\ O \\ $	2.733 Å	139.88°	248163	5
7)	$ \begin{array}{c} & O \\ & O $	2.789 Å	141.09°	989838	6
8)	$H_2N \xrightarrow{\oplus H_2} H_2 = H_$	2.797 Å	153.87°	669197	7

9)	OH N-HO-S O COOH	2.805 Å	177.52°	286383	8
	NH ₂	•			
10)	$ \begin{array}{c} $	2.834 A	125.08°	968379	9
11)	CI N-HO-S NH ₂ OH OH COOH	2.999 Å	146.28°	792417	10
12)	Br N-HO-S NH ₂ OH OH COOH	2.811 Å	159.94°	792480	10
13)	OH OH OH OH OH OH OH COOH	2.902 Å	148.12°	696479	11
14)	$H_{3}C \xrightarrow{\bigcirc} 0 \\ N \xrightarrow{\bigcirc} N \xrightarrow{\bigcirc} 0 \\ N \xrightarrow{\bigcirc} 0 \\ H_{3}C \xrightarrow{\bigcirc} 0 \\ O O 0 \\ O \\$	2.725 Å	160.10°	894924	12

 Table ESI-1.Comparative melting point of compounds and their reactants.

Reactant 1	M.P.	Reactant 2	M.P.	Product	M.P.
5-SSA	110°C	4-Ph-Py	77°C	1	236°C
8-HQSA	>250°C	4-Ph-Py	77°C	2	>250°C
4-SA-Sy	>250°C	4,4'-BPP	60°C	3	113°C

 Table ESI-2.
 Solubility of compounds in different solvents.

Solubility	H₂O	CH₃OH	C₂H₅OH	C ₂ H ₆ O	СНЗСООН	CHCl₃	DCM	THF	DMF	DMSO
Compound	Soluble	Partially	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Soluble	Soluble
1		Soluble								
Compound	Partially	Soluble	Soluble	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Soluble	Soluble
2	Soluble									
Compound	Partially	Soluble	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Soluble	Soluble
3	Soluble									

Figure ESI-1. FT-IR spectrum of 1.

Figure ESI-2. FT-IR spectrum of 2.

Figure ESI-4.Centro-symmetric dimer in 1.

Figure ESI-5. Π - π interaction in 1.

Figure ESI-6. T4(0)A1 type of infinite water chains formed in 2.

Figure ESI-7. Hexameric water cluster (W6) with cyclic R4 core, highlighted by green bonds, in 2.

Table ES	Table ESI-3. Bond angles and distances of different Interactions of lattice water molecules in 2.							
S.No.	Interaction O-HO	Bond Distance D-HA	Bond Angle D-HA					
1)	O5-H5BO1	2.040 Å	154.50°					
2)	07-H7BO1	1.991 Å	166.40°					
3)	O5-H5AO3	2.100 Å	161.79°					
4)	O7-H7AO3	1.975 Å	171.44°					
5)	O6-H6A05	1.964 Å	160.95°					
6)	O4-H4AO6	1.761 Å	171.48°					
7)	O6-H6BO7	1.892 Å	161.75°					

Table ESI-4. Bond angles and distances of different Interactions of lattice water molecules in 3.						
S.No.	Interaction O-H O	Bond Distance D-HA	Bond Angle D-HA			
1)	07-H7B01	1.987 Å	167.01°			
2)	09-H9AO1	1.971 Å	167.26°			
3)	O8-H8BO3	2.074 Å	155.12°			
4)	O10-H10AO4	1.946 Å	157.56°			
5)	O9-H9B06	2.232 Å	150.54°			
6)	08-H8A07	2.002 Å	171.98°			
7)	O10-H10BO7	2.061 Å	160.30°			
8)	07-H7A010	1.863 Å	163.63°			

Figure ESI-8. Pie interactions between crystal formersin 3.

Figure ESI-9.(a)Hireshfeld surface, (b)Curvedness and (c) Shape index surfaces of 1.

Figure ESI-10. Total and individual figerprint plots of 1.

Figure ESI-11.(a) Hireshfeld surface, (b)Curvedness and (c) Shape index surfaces of 2.

Figure ESI-12. Total and individual figerprint plots of 2.

Figure ESI-13. (a)Hireshfeld surface, (b)Curvedness and (c) Shape index surfaces of 3.

Figure ESI-14. Total and individual figerprint plots of 3.

	Table ESI-5. Hirshfeld surface property information of 1.									
Name	Minimum	Mean	Maximum	Units						
di	0.623	1.673	2.501	Å						
d _e	0.623	1.678	2.534	Å						
d _{norm}	-0.779	0.371	1.187							
Shape index	-0.997	0.234	0.997							
Curvedness	-3.517	-0.987	0.444							

Table ESI-6. Percentage of total surface area for close contacts between atoms inside and outside the

			surface if	1 I .						
Inside	Outside	Outside atoms								
atoms	S	О	Н	Ν	С	Total				
С		4.0	12.0	•	6.0	22.0				
Н	0.0	16.5	28.6	0.6	8.5	54.2				
N	•	0.1	1.0	•	•	1.1				
0	•	0.4	18.7	0.1	3.5	22.7				
S	•	0.0	0.1	•	•	0.1				
Total		21.0	60.3	0.7	18.0					

Table ESI-7. Hireshfeld surface property information of 2. Name Minimum Mean Maximum Units d_i 0.622 1.700 2.547 Å de 0.753 1.691 2.531 Å -0.782 1.381 0.428 $\mathbf{d}_{\mathrm{norm}}$ Shape index -0.997 0.998 0.225 Curvedness -4.162 -1.054 0.381

Table ESI-8. Percentage of total surface area for close contacts between atoms inside and outside in 2.

Inside	Outside atoms							
atoms	S	0	Н	Ν	С	Total		
С		1.8	13.1	0.8	7.9	23.6		
Н	0.1	12.5	36.1	1.1	7.6	57.3		
Ν		0.0	1.8		0.8	2.6		
0		1.4	13.7		1.3	16.4		
S			0.1			0.1		
Total	0.1	15.6	64.9	1.9	17.6			

Table ESI-9. Hireshfeld surface property information of 3.									
Name	Minimum	Mean	Maximum	Units					
di	0.665	1.624	2.504	Å					
d _e	0.746	1.666	2.576	Å					
d _{norm}	-0.718	0.401	1.275						
Shape index	-0.996	0.229	0.999						
Curvedness	-3.560	-1.024	0.350						

 Table ESI-10.Percentage of total surface area for close contacts between atoms inside and outside the in 3.

Inside	Outside atoms						
atoms	S	Ο	Ν	Н	С	Total	
С		1.0	0.4	5.5	10.4	17.4	
Н	0.1	18.1	0.7	40.5	6.0	65.4	
N		0.5	0.3	0.7	0.6	2.1	
0		0.2	0.2	14.1	0.7	15.1	
S				0.0	•	0.0	
Total	0.1	19.8	1.5	60.9	17.7		

Table ESI-11: Contribution of different interactions in 1, 2 and 3.

COMPOUND	1	2	3
O-HO-N	35.2	26.1	32.2
НН	28.6	36.1	40.5
С-НН-С	20.4	20.1	11.6
CC	6.0	7.9	10.4
N-HH-N	1.5	2.9	1.4
C-OO-C	7.5	3.1	1.7

Table	ESI-12.Calculated	interaction	energy (IE) for	salt and	co-crystal	and the	difference	in i	interaction
energy	v values (ΔIE). All v	values are kJ	l/mol.							

	Interaction	IE (kJ/mol)	ΔΙΕ
			(salt-Cocrystal)
Ι	Salt	-99.1	85.1
	Co-crystal	-14.0	
II	Salt	-48.5	8.8
	Co-crystal	-39.7	
III	Salt	-14.8	4.4
	Co-crystal	-10.4	
IV	Salt	-108.8	11.5
	Co-crystal	-97.3	
V	Salt	-108.1	17.3
	Co-crystal	-90.8	

Table ESI-13. Interaction energy (IE) of various sulfonate-pyridinium salt with methyl pyridine as a monomer.

Crystal	IE(kJ/mol)
Ι	-104.2
II	-52.9
III	-19.1
IV	-108.8
IVa	-111.7
V	-108.0
VI	-37.9

 Table ESI-14. Optimized geometries of various charge assisted sulfonate-pyridinium salt/co-crystals.

 Selected bond distances in Å.

Table ESI-15. Optimized geometries as well as the corresponding QTAIM topological plots of various charge assisted sulfonate-pyridinium salt keeping methyl pyridine as a monomer. Selected bond distance in Å. The bond critical points are designated as smallgreen spheres. AIM parameters (in au) electron density (ρ), Laplacian of electron density ($\nabla^2 \rho$) and total energy density (H) at the bcps of selected bonds are also shown.

FigureESI-15. TGA-DTA Thermograms of 1.

FigureESI-17. TGA-DTA Thermograms of 3.

Figure ESI-18.K-M plots of 5-SSA, 4-Ph-Py and 1.

Figure ESI-19.K-M plots of 8-HQSA, 4-Ph-Py and 2.

Figure ESI-20.K-M plots of 4-SA-Sy, 4,4'-BPP and 3.

Figure ESI-21. Experimental P-XRD curves (green) of **1**, **2**, and **3** compared with simulated P-XRD curves (red) of **1**, **2** and **3**.

Compound	5-SAA	4-Ph-Py	1	
Solubility	26.83mg/ml	0.12mg/ml	0.62mg/ml	
Compound	8-HQSA	4-Ph-Py	2	
Solubility	0.21mg/ml	0.12mg/ml	0.33mg/ml	
Compound	4-SA-Sy	4,4'-BPP	3	
Solubility	0.04mg/ml	0.35mg/ml	0.51mg/ml	

 Table ESI-16.Comparative aqueous solubility of reactants and products.

	Chart ESI-2. B	ifurcated hydrog	gen bonding	interactions	s reported by us.
S.No.	Compound	Bifurcated Interaction	Bond Distance D-HA	Bond Angle D-HA	Molecular Structure Diagram
1)		N2-NH2O1	2.473 Å	125.05°	H11A 011 010 H118 H9B H9A H10A
	[(4,4'-BPP-2H) ²⁺ (4HQSAH) ²⁻ .(H ₂ O) ₃]	N2-NH2N3	1.919 Å	162.38°	HIA HIA HIA HIA HIA HIA HIA HIA HIA HIA
		N1-NH1O5	2.450 Å	122.67°	02 51 04 03 04 03 04 03 04 05 07 08 07 08
		N1-NH1N4	1.889 Å	161.52°	CCDC Submission, 1988032
2)	[(4,4-BPY-2H) ²⁺⁽ 2-SA-0VH) ^{2−′} 2H ₂ O]	N2-NH204	1.701 Å	159.23°	C19 C19 C11 C15 C14 C12 C10 C11 C12 C10 C11 C12 C10 C12 C10 C12 C10 C13 C12 C10 C13 C13 C13 C13 C13 C13 C13 C13
		N2-NH2O5	2.464 Å	123.32°	CCDC Submission 1981823
3)	[(8-HOSA_H) [*] (4-Pb_Py_H) ⁺ 3H ₂ OI (2)	N3-NH3O4	2.406 Å	127.79°	
		N2-NH2N1	1.198 Å	158.02°	
					CCDC Submission 2032728

4)	$[(4,4'-BPP-H)^{2+}(4-SA-Sy-H)^{2-}, 4H_2O]$ (3)	N2-NH2O4	1.805 Å	157.24°	
		N2-NH2O5	2.471 Å	127.51°	CCDC Submission 2032729