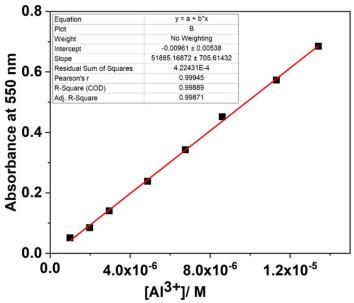
Supporting Information

FRET based ratiometric switch for selective sensing of Al³⁺ with bio-imaging in human peripheral blood mononuclear cells PBMCs


Sangita Das^{a*}, Partha Pratim Das^b, James W.Walton^a, Kakali Ghoshal^c, Lakshman Patra^d and Maitree Bhattacharyya^c

- a. Durham University, Department of Chemistry, Durham, DH1 3LE, UK; Email: sangita.das@durham.ac.uk
- ^bDepartment of Earth System Sciences, Yonsei University, Seoul 120749, Korea.
- ^{c.} Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
- d. Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, India

CONTENTS

- 1. UV/Vis study
- 2. Fluorescence Study
- 3. Calculation of FRET efficiency
- 4. Truth table for INHIBIT Logic Gate and Combinatorial logic scheme of INHIBIT logic operations
- 5. ¹H NMR spectrum of Compound 1
- 6. ¹³C MR spectrum of Compound 1
- 7. Mass spectrum of Compound 1
- 8. ¹H NMR spectrum of TPRH
- 9. 13 C NMR spectrum of TPRH
- 10. Mass spectrum of TPRH
- 11. MS spectrum of the complex TPRH:Al³⁺)
- 12. ¹H NMR of TPRH and TPRH-Al³⁺
- 13. Comparison table
- 14. References

1. UV/vis Study

Determination of Limit of Detection

Figure S1: Absorbance intensity at 550 nm of TPRH depending on the concentration of A1³⁺

The limit of detection (LOD) of TPRH towards Al^{3+} was determined from the following equation: LOD = $K \times Sb_1/S$, where K = 3; Sb_1 is the standard deviation of the blank solution; S is the slope of the calibration curve. From the data we find slope = 51900, and Sb_1 value is 0.0006. The calculated Limit of Detection was calculated as 3.5×10^{-8} M.

Determination of binding constant

The association constant was calculated, according to the Benesi-Hildebrand equation²:

$$1/(A-A_o) = 1/\{K(A_{max}-A_o) [M^{x+}]^n\} + 1/[A_{max}-A_o]$$

Here A_o and A are the absorbance of the probe at 550 nm in the absence of guest and in the presence of added guest, A_{max} is absorbance in presence of added $[M^{x+}]_{max}$ and K_a is the association constant calculated for Al^{3+} binding. The association constant (K_a) was determined from the slope of the straight line of the plot of $1/(A-A_o)$ against $1/[Al^{3+}]$. The association constant for TPRH was found to be $5.9 \times 10^5 M^{-1}$.

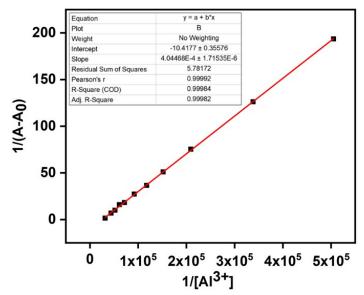
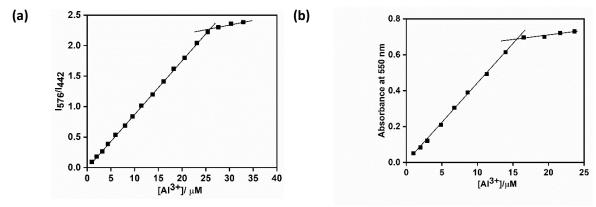


Figure S2: Benesi–Hildebrand plot from UV-Vis titration data of receptor (TPRH, 20 μ M) with Al³⁺.

2. Fluorescence Study


Determination of fluorescence Quantum Yield (Φ) of TPRH and its complex with Al³⁺

To measure the quantum yields of TPRH and its complex with Al^{3+} , the absorbance of the compounds in methanol solution were recorded. The emission spectra were then recorded using the maximum excitation wavelengths, and the integrated areas of the fluorescence-corrected spectra were measured. The quantum yield of TPRH was then calculated by comparison with fluorescein (Φ s = 0.97 in basic ethanol) as a reference. The quantum yield of TPRH- Al^{3+} was calculated by comparison with rhodamine B (Φ s = 0.66 in ethanol) as a reference. In each case the following equation was used:

$$\Phi_{x} = \Phi_{s} \times \left(\frac{Ix}{Is}\right) \times \left(\frac{As}{Ax}\right) \times \left(\frac{nx}{ns}\right)^{2}$$

where, x and s indicate the unknown and standard solution, respectively, Φ is the quantum yield, I is the integrated area under the fluorescence spectra, A is the absorbance and n is the refractive index of the solvent. The quantum yield calculated for TPRH using the above equation was 0.21. The quantum yield calculated for TPRH-Al³⁺ using the above equation was 0.36.

Linear responsive curve of TPRH

Figure S3: The response curve of (a) emission intensity ratio at I_{576}/I_{442} (in nm) and (b) absorbance at 550 nm of **TPRH** depending on the Al^{3+} concentration.

Limit of detection determination

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of **TPRH** without Al^{3+} was measured 10 times and the average and standard deviation of blank measurements was determined. The limit of detection (LOD) of TPRH towards Al^{3+} was determined from the following equation: $LOD = K \times Sb_1/S$, where K = 3; Sb_1 is the standard deviation of the blank solution; S is the slope of the calibration curve. For Al^{3+} :

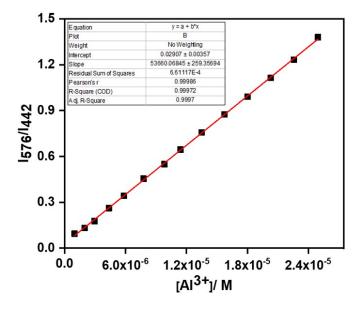
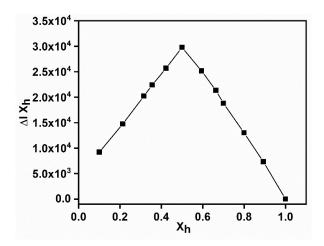



Figure S4: Emission intensity ratio I₅₇₆/I₄₄₂ of TPRH depending on the concentration of Al³⁺

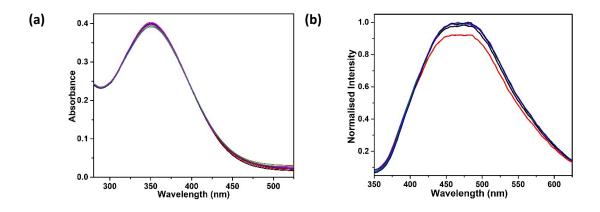
From the data we find slope = 53700, and Sb₁ value is 0.0012. Thus, using the formula above the limit of detection is calculated as 6.7×10^{-8} M for TPRH.

Job Plot

Stock solution of TPRH and Al³⁺ were prepared at 2.0 x 10⁻⁵ M in buffered CH₃CN-H₂O (1:1, v/v). The emission at 576 nm was monitored as the molar ratio was varied, but equal total molar quantities maintained. A Job plot was drawn by plotting $\Delta I.X_{TPRH}$ vs X_{Al} (ΔI = change of intensity of the emission spectrum during titration and X_{TPRH} is the mole fraction of TPRH).

Figure S5: Job plot diagram of TPRH with Al³⁺ (where X_h is the mole fraction of TPRH and ΔI indicates the change of emission at 576 nm).

3. Calculation of FRET efficiency


FRET efficiency (E) of the probe (TPRH) was evaluated according to the following equation:

$$E = 1 - \frac{\Phi_D}{\Phi_D^0}$$

Where, Φ_D and Φ_D^0 are the fluorescence quantum yields of the triphenylamine donor in the presence and absence of the rhodamine acceptor, respectively. Φ_D was obtained by fluorescence measurement of TPRH in the presence of 1 equivalents of Al³⁺ (TPRH-Al³⁺), and Φ_D^0 was obtained using the corresponding triphenylamine conjugated derivative (compound 1). Quantum yields of both triphenylamine conjugated derivative (compound 1) and TPRH-Al³⁺ were measured in methanol solution using fluorescein ($\Phi = 0.97$ in basic ethanol) as standard. Both the donor and the TPRH-Al³⁺ were taken in 10 μ M concentration. The FRET efficiency of TPRH was calculated to be 44%.

Figure S6: The spectral overlap of donor emission (green line) and acceptor absorbance (red line) of TPRH. Here, the donor is compound **1** and the acceptor is TPRH-Al³⁺. Spectra were recorded in MeOH/H₂O (1/4, v/v, pH = 7.2, 10 mM HEPES buffer solution), $\lambda_{ex} = 350$ nm.

Figure S7: Change of (a) UV-vis and (b) emission spectra of compound 1 upon gradual addition of Al³⁺ (0 to 1.5 equivalents) (λ ex = 340 nm.).

Analogue of the rhodamine half of the molecule has already been reported by A. Lobnik *et.al* in Sensors 2018, 18, 1201; doi:10.3390/s18041201, and the probe is not sensitive towards Al³⁺, which showed that the response is more than just the sum of the responses of each of the component halves.

4. Truth table for INHIBIT Logic Gate Table S1

Input 1	Input 2	Output (Emission intensity at	Output (Emission intensity at
(Al ³⁺)	(EDTA)	442 nm)	576 nm)
0	0	1	0
1	0	0	1
0	1	1	0
1	1	1	0

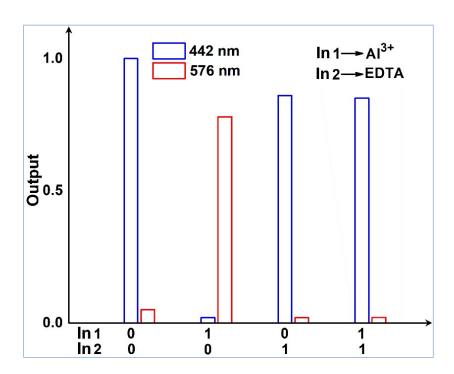


Figure S8: Combinatorial logic scheme of INHIBIT logic operations.

5. ¹H NMR spectrum of Compound 1

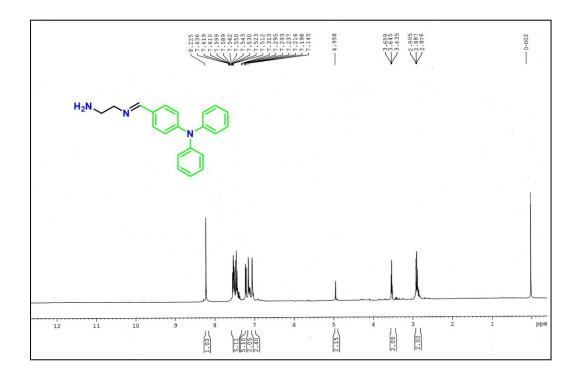


Figure S9: ¹H NMR (400 MHz) spectrum of Compound 1 in CDCl₃ (298 K).

6. ¹³C NMR spectrum of Compound 1

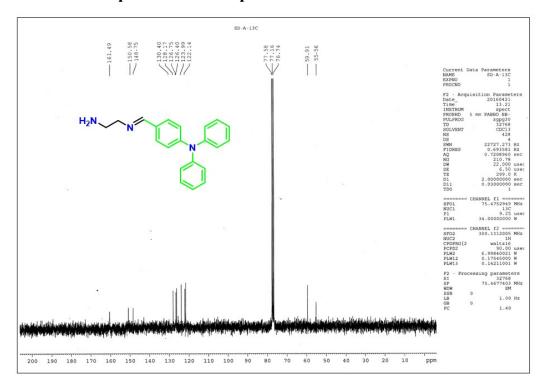
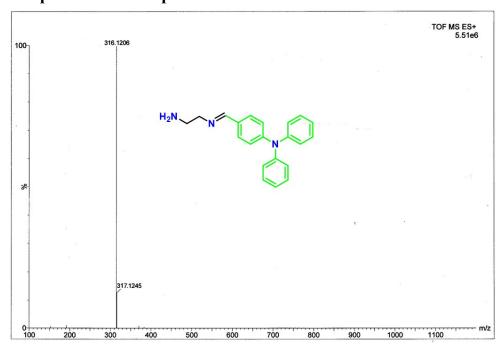



Figure S10: ¹³C NMR (75 MHz) spectrum of Compound 1 in CDCl₃ (298 K).

7. Mass Spectrum of Compound 1

Figure S11: MS of Compound 1 (positive ESI mode). m/z 316.12; calcd for $C_{21}H_{22}N_3$ [M+H]⁺ 316.18.

8. ¹H NMR spectrum of TPRH

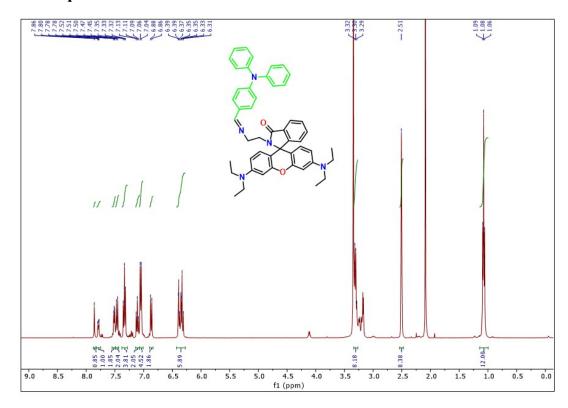
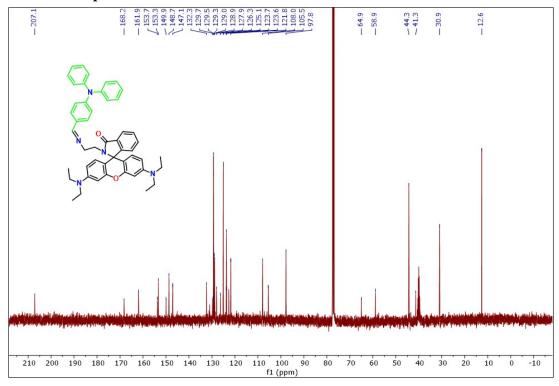
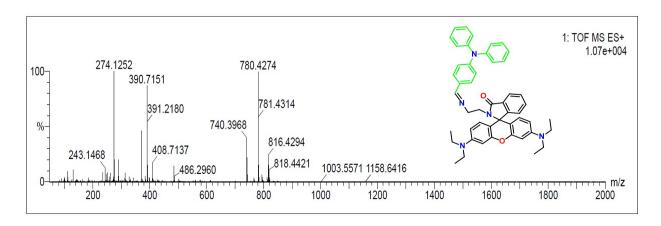
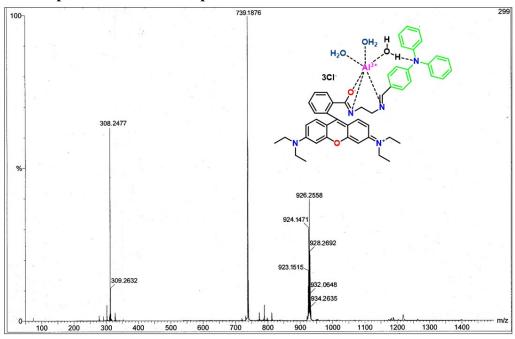



Figure S12: ¹H NMR (400 MHz) spectrum of TPRH in d₆-DMSO (298 K)


9. 13 C MR spectrum of TPRH

ure S13: ¹³C NMR (100 MHz) spectrum of TPRH in CDCl₃ (298 K).


Fig

10. Mass spectrum of TPRH


Figure S14: HRMS of TPRH (positive ESI mode). HRMS (ESI, positive mode): (m/z) found: 740.3968; calcd for $C_{49}H_{49}N_5O_2$ [M+H]⁺ 740.3959.

11. Mass spectrum of the complex TPRH: Al³⁺

Figure S15: MS spectrum of the TPRH with Al³⁺ (positive ESI mode). m/z 926.26, [TPRH + Al³⁺ + 3H₂O + 3³⁵Cl⁻ + H⁺]⁺ requires 926.31.

12. 1H NMR of TPRH and TPRH-Al3+

Figure S16: Partial ¹H NMR (400 MHz) spectra of (a) TPRH and (b) TPRH + Al³⁺ in d₆-DMSO. [TPRH] = 3.12×10^{-3} M; [Al³⁺] = 6.24×10^{-3} M (298 K).

13. Comparison Table Table S2

Sr. No	Fluorophore Used	Ratiometric	Detection	Bioimaging	Selective	Mechanism	Reference
		Fluorescence	Limit	Studies	towards		
		Change					
1.	Rhodamine-	Yes	8.06 x 10 ⁻⁸	No	A1 ³⁺	FRET	Tetrahedron
	naphthalene		M				Letters 2016,
							57, 1935–1939
2.	Rhodamine-linked	Yes	1.08 x 10 ⁻⁴	Yes	F-, Al ³⁺	FRET	Supramolecular
	pyridyl thiourea		M and 1.27 x 10 ⁻⁶ M		and Ag ⁺		Chemistry,
			for F- and				2015, 27, , 490–
			Al ³⁺ ions				500
			respectively				
3.	Rhodamine-diformyl p-	Yes	5 × 10 ⁻⁹ M	Yes	A1 ³⁺	PET-CHEF	Inorg. Chem.
	cresol					and FRET	2013, 52,
							3627–3633
4.	N-	No	$3.1 \times 10^{-9} \text{ M}$	No	Al3+ and	Chelation-	ACS Sens.
	salicylidenehydrazide				Zn ²⁺	enhanced	2016, 1,
	ligands- furan-					fluorescence	144-150
						(CHEF)	
5.	Antipyrine Schiff bases	No	4.97 × 10 ⁻⁷	No	Al3+ and	PET	Sensors and
			M 9.60 × 10 ⁻⁷		Cr ³⁺		Actuators B,

6. 7.	2,5-diarylthiazolo[5,4-d]thiazole Naphthaldehyde semicarbazone	No No	M Respectively Al ³⁺ and Cr ³⁺ Not given 6.75 ×10 ⁻⁸ M (Al ³⁺)and 7.89×10 ⁻⁷ M (F ⁻)	No Yes	Cr ³⁺ and Al ³⁺ Cascade sensing of Al ³⁺ and F-	Off-On mechanism	2016, 231, 847– 859 Dyes and Pigments 2012, 94, 423-426 RSC Adv., 2020, 10, 21629–21635
8.	Benzothiazol-furan	No	6.47 nM	Yes	Al ³⁺	PET and ESIPT	New J. Chem., 2020, 44, 12079-12089
9.	Anthracene- pyridinecarboxaldehyde	No	$(4.338 \pm 0.00032) \text{ x} $ $10^{-11} (\text{Al}^{3+})$ $(5.865 \pm 0.00011)) \text{ x} $ $10^{-11} (\text{Al}^{3+})$	No	Cr ³⁺ and Al ³⁺	CHEF	New J. Chem., 2020,44, 12692- 12703
10	Antipyrine	No	1.05 nM for Al ³⁺ , 2.35 nM for Zn ²⁺	No	Al ³⁺ and Zn ²⁺	Aggregation induced emission enhancement (AIEE)	Photochem. Photobiol. Sci., 2020,19, 681- 694
11	Rhodamine-thiophene	No	4.17 × 10 ⁻⁶ M	No	A1 ³⁺	Off-On mechanism	Luminescence 2016; 31, 851– 855
12	Rhodamine- aminophenol	No	0.16 μΜ	Yes	Al ³⁺	Off-On mechanism	RSC Adv., 2018, 8, 31106– 31112
13	Thiophene-based rhodamine	No	Fe ³⁺ and Al ³⁺ 5 and 6 μM, respectively	Yes	Fe(III) and Al ³⁺	Off-On mechanism	10.1007/s00216- 017-0490-8
14	Naphthalimide	Yes	2.9 × 10 ⁻⁷ M	Yes	Al ³⁺	Intramolecular charge transfer (ICT)	New J. Chem., 2020,44, 3261- 3267
15	Triphenylamine and rhodamine-B	Yes	6.7 × 10-8 M	Yes	Al ³⁺	FRET	Present Work

14. References

- (a) M. Shortreed, R. Kopelman, M. Kuhn and B. Hoyland, *Anal. Chem.*, 1996, 68, 1414;
 (b) W. Lin, L. Yuan, Z. Cao, Y. Feng and L. Long, *Chem. Eur. J.*, 2009, 15, 5096.
- 2. (a) H. A. Benesi and J. H. Hildebrand, *J. Am. Chem. Soc.*, 1949, **71**, 2703; (b) D. C. Carter and J. X. Ho, *Adv. Protein Chem.*,1994, **45**, 153; (c) A. Mallick and N. Chattopadhyay, *Photochem. Photobiol.*, 2005, **81**, 419; (d) I. Ravikumar, B. N. Ahamed and P. Ghosh, *Tetrahedron*, 2007, **63**, 12940.