Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

A highly efficient solution and solid state ESIPT fluorophore and its OLEDs application

Virgile Trannoy,^{ad} Anne Léaustic,^a Sophie Gadan,^a Régis Guillot,^a Clémence Allain,^b Gilles Clavier,^b Sandra Mazerat,^a Bernard Geffroy^{*ce} and Pei Yu^{*a}

^a Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France.

^b Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France.

^c Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France.

^d Present address : Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedratico José Beltran 2, 46980 Paterna, Spain.

^e LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau, France.

Table of contents

X-Ray crystallography	2
Additional fluorescence data	5
AFM images	6
¹ H NMR and ¹³ C NMR spectra	7

X-Ray single crystal structure

Fig. S01. An ORTEP drawing of compound **BP(OH)**₂**DCEt**₂. Thermal ellipsoids are shown at the 30% level.

X-ray diffraction data for compound **BP(OH)**₂**DCEt**₂ were collected on a Kappa X8 APPEX II Bruker diffractometer equipped with a graphite-monochromated MoK_{α} radiation $\lambda = 0.71073$ Å). Crystal was mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then flashfrozen in a nitrogen-gas stream at 100 K. The temperature of the crystal was maintained at the selected value by means of a 700 series Cryostream cooling device to within an accuracy of ±1 K. The data were corrected for Lorentz polarization and absorption effects. The structures were solved by direct methods using SHELXS-97^{SRX1} and refined against F^2 by full-matrix least-squares techniques using SHELXL-2018^{SRX2} with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map and introduced into the calculations as a riding model with isotropic thermal parameters. All calculations were performed by using the Crystal Structure crystallographic software package WINGX.^{SRX3}

The crystal data collection and refinement parameters are given in Table SX1.

The asymmetric unit of the crystal contains one-half-molecule.

CCDC 2004784 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/Requestastructure.

Compound	BP(OH) ₂ DCEt ₂
CCDC	2004784
Empirical Formula	C ₁₆ H ₁₆ N ₂ O ₆
M _r	332.31
Crystal size, mm ³	0.21 x 0.09 x 0.08
Crystal system	monoclinic
Space group	C 2/c
a, Å	16.3814(6)
b, Å	11.6206(5)
c, Å	8.1169(3)
α, °	90
β, °	102.453(2)
γ, °	90
Cell volume, Å ³	1508.79(10)
Z ; Z'	4 ; 1/2
Т, К	100(1)
Radiation type; wavelength Å	ΜοΚα; 0.71073
F ₀₀₀	696

 Table SX1. Crystallographic data and structure refinement details.

μ , mm ⁻¹	0.114
range, °	2.166 - 30.642
Reflections collected	15 738
Reflections unique	2 310
R _{int}	0.0341
GOF	1.060
Refl. obs. I > 2(I)	1 743
Parameters	111
wR ₂ (all data)	0.1249
R value $I > 2(I)$	0.0415
Largest diff. peak and hole $(e^{-}.A^{-3})$	0.511 ; -0.251

[SRX1] Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, **1997**.

[SRX2] Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112-122.

[SRX3] Farrugia, L. J. J. Appl. Cryst. **1999**, *32*, 837-838.

Figure S1. Fluorescence changes of BP(OH)₂DCEt₂ vs pH in H₂O-DMSO (3%) at RT

Figure S2. Fluorescence of microcrystals of BP(OH)₂DCEt₂ at RT

AFM images:

Tapping mode topography and phase imaging was accomplished using an Innova AFM Bruker with NanoDrive v8.02 software.

Tapping mode images were acquired using silicon tips from Nanosensors (PPP NCSTR) with a resonance frequency ranging beetween 76 and 263 kHz. Images were processed using WsXM software, freely available on internet.

Figure S3. AFM image of a 70 nm thick neat film of BP(OH)₂DCEt₂ at RT where brigts spots

Figure S4. AFM image of DPVBi film doped with 10% of BP(OH)₂DCEt₂ at RT

