Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry

Electronic Supporting Information (ESI)

Stabilization of caesium ions by simple organic molecules: crystal structures of Cs(OXL) (OXL = oxalurate anion), and CsOH/cyanuric acid co-crystal Cs₃(CYH₃)₄(OH)₃ (CYH₃ = cyanuric acid)

Francesco Isaia,*^a Alessandra Garau,^a Carlo Castellano,^b Francesco Demartin,^b M. Carla Aragoni,^a Massimiliano Arca,^a Claudia Caltagirone,^a Vito Lippolis,^a Tiziana Pivetta^a

^aDipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato CA, 09042, Italy

^bDipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, Milano, 20133, Italy.

CONTENTS

		page
Scheme S1.	Reaction of parabanic acid with the hydroxide ion: formation of the oxalurate ion	S2
Table S1.	Crystallographic data and structure refinement details of Cs(OXL) and Cs ₃ (CYH ₃) ₄ (OH) ₃	S2
Table S2.	Cs(OXL) - Selected interatomic distances (Å) and angles (deg.)	S3
Table S3.	Cs ₃ (CYH ₃) ₄ (OH) ₃ - Selected interatomic distances (Å) and angles (deg.)	S4
Figure S1.	Perspective view of the Cs(OXL) showing the alignment of the ribbons made by the oxalurate	te
	anions along [010]	S5
Figure S2.	Perspective view of Cs(OXL) showing the hydrogen bonds between the layers	S5
Table S4.	Electrostatic potential surface of OXL anion, bent form	S 6
Table S5.	Electrostatic potential surface of OXL anion, planar form	S 6
Table S6.	Atoms electrostatic charge of di-OXL anion	S 7
References.		S 7

Scheme S1. The parabanic acid undergoes the basic hydrolysis of the imide bond, the attack of OH⁻ occurs either on C4 or C5 as they are more positive than C2 because they are bound together. Consequently, the break of the carbon-nitrogen bond will occur between the atoms N3-C4 or N1-C5 leading to the oxalurate anion formation.¹

Compound	CsOXL(1)	Cs ₃ (CYH ₃) ₄ (OH) ₃ (2)
Formula	$C_3H_3CsN_2O_4$	C ₄ HCsN ₃ O ₅
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1 (no. 2)	<i>P</i> -1 (no. 2)
<i>M.W</i> .	263.98	966.09
a / Å	7.8313(4)	10.506(1)
b / Å	8.4529(4)	10.536(1)
c / Å	10.3855(5)	13.657(2)
α/°	71.08(1)	98.13(2)
β/°	83.49(1)	103.99(2)
γl°	81.22(1)	111.54(2)
V / Å ³	641.22(5)	1319.5(3)
Z	4	2
$D_c/g/cm^{-3}$	2.734	2.432
μ/ mm ⁻¹	5.730	4.215
Measured reflections	8153	13917
Unique reflections, R _{int}	3188, 0.030	7891, 0.054
Observed reflections $[l > 2\sigma(l)]$	2503	5787
Absorption correction	SADABS	SADABS
T _{min} , T _{max}	0.554, 1.000	0.583, 1.000
R	0.0299	0.087
wR2 [all data]	0.0750	0.267
GOF	0.959	1.069

Table S1. Crystallographic data and structure refinement details

 $R = \sum ||Fo| - |Fc|| / \sum |Fo|; wR2 = \{\sum [w(Fo^2 - Fc^2)^2] / \sum [w(Fo^2)^2] \}^{1/2};$

 $GOF=\{\Sigma[w(Fo^2-Fc^2)]/(n-p)\}^{1/2}$ where n is the number of reflections and p is the number of refined parameters.

 Table S2. Cs(OXL) (1) - Selected interatomic distances (Å) and angles (deg.)

Cs1-O1	3.007(3)	Cs2-O1	3.232(4)
Cs1-O2a	3.180(4)	Cs2-O3b	3.112(3)
Cs1-O3	3.229(3)	Cs2-O4c	3.601(4)
Cs1-O3b	3.228(4)	Cs2-O4b	3.221(3)
Cs1-O4c	3.285(3)	Cs2-O5	2.975(3)
Cs1-O4b	3.306(4)	Cs2-O5e	3.334(4)
Cs1-O6d	3.184(4)	Cs2-O6e	3.433(4)
Cs1-O7b	3.036(3)	Cs2-O7	3.183(3)
Cs1-O8b	3.068(3)	Cs2-O8c	3.150(3)
O1-C1	1.241(5)	O5-C4	1.234(6)
O2-C1	1.255(5)	O6-C4	1.258(5)
O3-C2	1.219(5)	O7-C5	1.218(5)
O4-C3	1.226(5)	O8-C6	1.223(5)
N1-C2	1.356(6)	N3-C5	1.369(6)
N1-C3	1.403(6)	N3-C6	1.420(6)
N2-C3	1.328(6)	N4-C6	1.327(6)
C1-C2	1.556(6)	C4-C5	1.567(6)
Hydrogen bonds			
N1…O2	2.648(5)	N1-H1…O2	101.1(3)
N3…O6	2.650(5)	N3-H3…O6	108.2(3)
N2…O6f	2.902(5)	N2-H2B··O6f	156.1(3)
N1…O6f	2.972(5)	N1-H1…O6f	155.6(3)
N3…O2f	2.895(6)	N3-H3···O2f	153.4(3)
N4…O2f	2.875(5)	N4-H4B…O2f	153.0(3)
N4-O5g	2.849(6)	N4-H4A…O5g	171.7(3)
N2-O1g	2.878(6)	N2-H2A…O1g	170.9(3)

Symmetry codes: a = 1- x,1-y,1-z; b = -x, 1-y,1-z; c = x, 1+y, z; d = x, y, z+1; e = -x, 2-y, -z; f = 1-x, 1-y, -z; g = x, y-1, z.

Cs1-O1	3.095(9)	Cs2-O1	3.404(11)
Cs1-O2e	3.169(10)	Cs2-O2h	3.114(8)
Cs1-O9f	3.583(11)	Cs2-O3c	3.007(9)
Cs1-O11a	3.271(11)	Cs2-O5h	3.478(12)
Cs1-O11g	3.307(13)	Cs2-O8g	3.651(12)
Cs1-O12f	3.166(9)	Cs2-O10i	3.072(8)
Cs1-OH1	3.295(15)	Cs2-O11g	3.156(10)
Cs1-OH2	3.149(13)	Cs2-OH2i	3.648(14)
Cs1-O4	3.823(13)	Cs2-OH3	3.281(12)
Cs3-04	3.297(11)	Cs3-O9d	3.580(11)
Cs3-O5a	3.332(10)	Cs3-OH1	3.448(15)
Cs3-06d	3.192(9)	Cs3-OH1d	3.336(14)
Cs3-07	3.209(9)	Cs3-OH2	3.161(14)
Cs3-O8e	3.333(10)	Cs3-OH3e	3.653(17)
C1 O1	1 248(13)	$C4 \ O4$	1 234(13)
C1-N1	1.2+0(15) 1 301(15)	C4-NA	1.234(13) 1.408(15)
C1-N1 C1-N3	1.391(13) 1.340(14)	C_{4-N6}	1 356(15)
$C^2 - O^2$	1.251(15)	C5-O5	1.330(13) 1.219(15)
C2-02 C2-N1	1.251(15) 1.384(14)	C5-N4	1.219(13) 1.348(13)
C2-N2	1 368(14)	C5-N5	1.367(14)
C3-O3	1.300(14)	C6-O6	1.307(14) 1.231(14)
C3-N2	1 386(15)	C6-N5	1.231(11) 1 415(15)
C3-N3	1.357(13)	C6-N6	1.341(15)
C7-07	1.224(13)	C10-O10	1.237(13)
C7-N7	1.369(15)	C10-N10	1.411(14)
C7-N9	1.380(14)	C10-N12	1.365(14)
C8-O8	1.234(16)	C11-O11	1.236(15)
C8-N7	1.391(15)	C11-N10	1.375(13)
C8-N8	1.369(15)	C11-N11	1.361(14)
C9-O9	1.232(14)	C12-O12	1.251(13)
C9-N8	1.361(15)	C12-N11	1.384(14)
C9-N9	1.365(13)	C12-N12	1.355(13)
Hydrogen bonds			
N4…O7a	2.765(14)	N4-H4…O7a	173(1)
N1…O10a	2.841(13)	N1-H1…O10a	179(1)
N7…O4a	2.838(14)	N7-H7…O4a	174(1)
N10…O1a	2.867(14)	N10-H10…O1a	175(1)
N5-O9b	2.906(15)	N5-H5…O9b	173(1)
N8…O6b	2.751(15)	N8-H8…O6b	177(1)
N2-O12b	2.846(15)	N2-H2…O12b	170(1)
N11-O3b	2.808(15)	N11-H11…O3b	177(1)
N3…OH3c	2.875(21)	N3-H3····OH3c	132(1)
N9-OH1d	2.671(22)	N9-H9…OH1d	157(1)
N12-OH3e	2.793(21)	N12-H12…OH3e	161(1)

TABLE S3. Cs₃(CYH₃)₄(OH)₃ (2) - Selected interatomic distances (Å) and angles (deg.)

Symmetry codes: a = -x, -y, -z; b = 1-x, 1-y, -z; c = -x, 1-y, -1-z; d = -x, 1-y, -z; e = x,y, 1+z; e = x-1, y, z; f = -x, 1-y, -z; g = x-1, y, z-1; h = -x, -y, -1-z; i = x,y,z-1; j = -1-x,-y,-1-z;

Figure S1. Perspective view of the Cs(OXL) (1) structure showing the alignment of the ribbons made by the oxalurate anions along [010].

Figure S2. Perspective view of the Cs(OXL) (1) structure showing the hydrogen bonds between the layers.

		Charge (e)		
	Atom	Mulliken	Electrostatic	Natural
	01	-0.579	-0.598	-0.685
	O2	-0.639	-0.671	-0.799
	03	-0.453	-0.479	-0.541
	O4	-0.516	-0.587	-0.645
	N1	-0.501	-0.684	-0.745
	N2	-0.615	-0.899	-0.916
	C1	0.514	0.483	0.675
	C2	0.412	0.543	0.590
	C3	0.591	0.844	0.810
	H2 (N2)	0.237	0.343	0.394
Property Range (kJ/mol)	H3 (N2)	0.289	0.372	0.436
-607.522 -84.7084	H4 (N1)	0.262	0.334	0.425

Table S4. Electrostatic potential surface (left), and atoms electrostatic charge (right) of OXL anion, bent form.

Table S5. Electrostatic potential surface (left), and atoms electrostatic charge (right) of OXL anion, planar form.

Table 50. Atom numbering (1011), and atoms electrostatic charge (fight) of ui-OAL and	Table S6. At	om numbering (1	eft), and atoms	s electrostatic charge	(right) o	of di-OXL anio
--	--------------	-----------------	-----------------	------------------------	-----------	----------------

C	Charge (e)			
Atom	Mulliken	Electrostatic	Natural	
01	-0.683	-0.737	-0.810	
O2	-0.782	-0.833	-0.920	
O3	-0.578	-0.586	-0.683	
O4	-0.654	-0.694	-0.779	
05	-0.683	-0.737	-0.810	
O6	-0.782	-0.832	-0.920	
O7	-0.578	-0.586	-0.683	
O8	-0.654	-0.693	-0.779	
N1	-0.826	-0.668	-0.817	
N2	-0.805	-1.095	-0.968	
N3	-0.826	-0.668	-0.817	
N4	-0.805	-1.094	-0.968	
C1	0.717	0.733	0.892	
C2	0.617	0.596	0.732	
C3	0.948	1.004	1.002	
C4	0.717	0.733	0.895	
C5	0.617	0.596	0.732	
C6	0.948	1.003	1.002	
H1 (N2)	0.272	0.393	0.397	
H2 (N4)	0.272	0.392	0.397	
H3 (N4-O2)	0.383	0.507	0.469	
H4 (N3)	0.391	0.378	0.480	
H5 (N2)	0.383	0.507	0.469	
H6 (N1)	0.391	0.378	0.480	

References.

1 J. March, in Advanced Organic Chemistry (reactions, mechanism and structure); **1992**, Fourth Edition; John Walley & Sons, Page 383. ISBN-10: 0471581488