Electronic Supplementary Material (ESI) For New Journal of Chemistry

Copolymerization of urea and murexide for efficient photocatalytic

hydrogen evolution and tetracycline degradation

Zhilu Du, ^a Xinyu Zhao, ^a Yingnan Zhao, ^a Huiying Sun, ^a Yingqi Li, ^{a,} * Xin Wang, ^a Tianyu Qiu, ^a Xia Zhao, ^a Tingting Song, ^a Huaqiao Tan^{*a}

^aKey Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.

* Corresponding authors

E-mail: andyli24@outlook.com; tanhq870@nenu.edu.cn

Characterization

The X-ray diffraction (XRD) patterns were recorded on a Bruker AXS D8 Focus with Cu K α radiation (λ = 1.54056 Å). The measurements were scanned over a range of 5° to 50° (2θ) with a step size 20°. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were obtained with a JEM-2100F microscope at an acceleration voltage of 200 kV. The scanning electron microscope (SEM) images were performed on a JEOL JSM 4800F SEM. EDS was used to measure the species and contents of component elements of the samples. Fourier transform infrared (FTIR) spectra were obtained using a Nicolet iS10 FTIR spectrometer. Elemental analysis (C, N) was achieved by a Vario EL cube microanalyzer. The optical absorption spectra of the samples were recorded in a UV-2600 UV-Vis spectrophotometer (Shimadzu). The UV-Vis diffuse reflectance spectra (DRS) employed BaSO4 as a reference by UV-2600 spectrophotometer. The TC concentrations were also detected by UV-2600 UV-vis spectrophotometer at 360 nm wavelength. X-ray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALABMKII spectrometer with an Al-Ka achromatic X-ray source. The Brunauer-Emmett-Teller (BET) specific surface area was determined by nitrogen adsorption-desorption isotherm measurements at 77 K with a Micromeritics Autosorb IQ instrument. Photoluminescence (PL) spectra and transient PL lifetime were tested on a spectrometer (Horiba Jobin Yvon Fluorolog-3) with a QY2 accessory and a time-correlated single-photon counting lifetime spectroscopy system. The electron paramagnetic resonance (EPR) measurements were carried out on a JEOL JES-FA200 spectrometer.

Electrochemical measurements

Electrochemical analysis was carried out using a CHI6082E electrochemical workstation in a conventional three electrode cell using a Pt plate and an Ag/AgCl electrode as counter electrode and reference electrode, respectively. Working electrodes were obtained as the following method: 30 mg of different catalysts was dispersed in solvent of 2 ml ethanol, and sonicated for 30 min to obtain a uniformly dispersed solution. Transferring photocatalyst suspensions onto a 1×2 cm² FTO conductive glass by a spin-coating method. Finally, the working electrode was air-dried at room temperature. The electrolyte was a 0.2 M Na₂SO₄ solution. For photocurrent measurement (i-t curves), a 300 W (CEL-HXF300, AULIGHT) Xe lamp was utilized as the light source. For electrochemical impedance spectroscopy (EIS) experiment, frequency ranges from 0.01 Hz to 10 kHz at -0.2V, the others unchanged.

Photocatalytic hydrogen evolution test

The photocatalytic reactions were carried out in a quartz reaction vessel connected to a closed gas circulation and evacuation system (CEL-SPH2N, CEAULIGHT). 10 mg of the photocatalyst powder was dispersed in 120 mL of aqueous solution containing triethanolamine (10 vol%) as the sacrificial electron donor. 3 wt.% Pt co-catalyst was photo-deposited by dissolving H₂PtCl₆ in the above 120 mL reaction solution. The temperature of the reactant solution was kept at 283K by a flow of cooling antifeeding solution during the reaction. The suspension was thoroughly degassed and irradiated with a 300W Xe lamp (CEL-HXF300, AULTT) by attaching a 420nm cut-off filter at the light source. The evolved gases were analyzed by gas chromatography (GC-7900, CEAULIGHT) every 30 min equipped with a thermal conductive detector, using argon as the carrier gas. For the stability test, the reaction system was evacuated every 3 h and recycled for 5 runs. (15 h recycling experiment with intermittent evacuation every 3 h.

Apparent quantum efficiency (AQE) measurement

The apparent quantum yield (AQE) for H2 evolution was obtained by using the 400, 420, 450, 500, 550, and 600 nm band-pass filter. The AQE was estimated as follows:

AQE (%) = number of evolved H_2 molecules $\times 2 \times 100$ /number of incident photons

Photocatalytic degradation of TC test

The photocatalytic degradation of tetracycline under visible light was used as a model to evaluate the photocatalytic performance of the samples. Visible light irradiation was achieved by a xenon lamp with a 420 nm cut-off filter. The device was connected to a circulating water-cooling system with a constant temperature of 25 °C. First, 20 ml of 20 ppm tetracycline solution and 20 mg of catalysts were placed in a beaker for ultrasonication and the reaction was in dark for 30 min under magnetic stirring to achieve adsorption-desorption equilibrium. Then the solution was illuminated for 2 h, 1 ml of suspension was taken every 20 min, centrifuged, and the supernatant was subjected to make a spectral test with an ultraviolet-visible spectrophotometer. Under the same conditions, the free radical trapping experiment was conducted by adding appropriate amounts of TEMPO, TEOA and IPA. TC and intermediates were monitored by LC-MS, which were obtained on an HP 6890GC-5973MSD mass spectrometer. A positive ionization electrospray ionization (ESI) source was used for spectrometer analysis in the m/z 100-500 range.

Fig. S1 Schematic illustration of the formation process of M₂₅CN.

Fig. S2 SEM images of (a) M_5CN (b) $M_{15}CN$ (c) $M_{50}CN$ (d) $M_{100}CN$.

Fig. S3 Nitrogen adsorption–desorption isotherms of CN and M_xCN.

Fig. S4 FTIR spectra of CN and M_xCN.

Fig. S5 The color of CN and M_xCN.

Fig. S6 XRD patterns of M₂₅CN before and after photodegradation of TC.

Fig. S7 SEM images of $M_{25}CN$ before (a) and after (b) photodegradation of TC.

Fig. S8 LC-MS full scan spectra of the main intermediates in TC degradation for (a) 0, (b) 60 and (c) 120 min by $M_{25}CN$.

Fig. S9 PL emission spectra of CN and M_x CN (λ_{ex} = 370 nm).

Fig. S10 (a) Photocurrent responses of CN and M_x CN with visible light irradiating ($\lambda \ge 420$ nm).

Fig. S11 Transient photocurrents of CN and M₂₅CN at different wavelength bands (λ = 450, 500, 550, 600 nm).

Fig. S12 Electrochemical impedance spectroscopy plots of CN and M_xCN in the dark.

Table S1 The BET surface areas of CN and M_xCN.

Sample	CN	M₅CN	M ₁₅ CN	M ₂₅ CN	M ₅₀ CN	M ₁₀₀ CN
Surface area(m ² g ⁻¹)	77.22	90.80	99.06	154.47	91.86	87.16

Table S2 The elemental analysis data of CN and M₂₅CN.

Sample	C/wt.%	N/wt.%	C/N
CN	35.81	64.91	0.64
M ₂₅ CN	37.68	62.55	0.70

Table S3 Comparison of g-C₃N₄-based small molecule copolymers in photocatalytic hydrogen production (HER).

Samples	Amounts (mg)	HER (µmol h ⁻¹ g ⁻¹)	Wavelength (nm)	ref	
MCN	10	6120	λ > 420	This work	
CNAL	100	2260	420 < λ < 780	R1	
CNQ	100	4360	420 < λ < 780	R2	
Pt/CNU-M	50	8000	λ > 420	R3	
CNB	100	294	λ > 420	R4	
CN-ABN	100	1470	λ > 420	R5	
Pt/CNU-ATCN	50	14500	λ > 420	R6	
CNA	100	1310	λ > 420	R7	
V-CN	10	13600	λ > 420	R8	

[R1] X. Q. Fan, L. X. Zhang, M. Wang, W. M. Huang, Y. J. Zhou, M. L. Li, R. L. Cheng and J. L. Shi, *Appl. Catal. B*, 2016, **182**, 68–73.

[R2] X. Q. Fan, L. X. Zhang, R. L. Cheng, M. Wang, M. L. Li, Y. J. Zhou and J. L. Shi, ACS Catal., 2015, 5, 5008-5015.

[R3] G. G. Zhang and X. C. Wang, J. Catal. 2013, 307, 246-253.

[R4] J. S. Zhang, X. F. Chen, K. Maeda, K. Domen, J. D. Epping, X. Z. Fu, M. Antonietti and X. C. Wang, *Angew. Chem. Int. Ed.*, 2010, **49**, 441-444.

[R5] J. S. Zhang, G. G. Zhang, X. F. Chen, L. Mohlman, G. Dolega, G. Lipner, M. Antonietti, S. Blechert and X. C. Wang, *Angew. Chem. Int. Ed.*, 2012, **51**, 3183-3187.

[R6] M. W. Zhang and X. C. Wang, *Energy Environ. Sci.*, 2014, 7, 1902–1906.

[R7] J. S. Zhang, M. W. Zhang, S. Lin, X. Z. Fu and X. C. Wang, J. Catal., 2014, 310, 24-30.

[R8] Y. Zhang, L. L. Wu, X. Y. Zhao, Y. N. Zhao, H. Q. Tan, X. Zhao, Y. Y. Ma, Z. Zhao, S. Y. Song, Y. H. Wang and Y. G. Li, *Adv. Energy Mater.* 2018, **8**, 1801139.

Table S4 The fitted parameters of fluorescence lifetime for CN and $M_{25}CN$. (y=A₁*exp(-x/ τ 1) +A₂*exp(-x/ τ 2) +B)

Sample	τ ₁ /ns (rel.%)	τ₂/ns (rel.%)	A ₁	A ₂	τ/ns
CN	3.63(0.58)	19.44(0.42)	617.28	83.67	10.27
M ₂₅ CN	2.26(0.61)	10.11(0.39)	944.38	133.82	5.32