Synthesis of α -Alkylidene Cyclic Carbonates via CO₂ Fixation Under Ambient Conditions Promoted by an Easily Available Silver Carbamate

Giulio Bresciani,^{a,b} Marco Bortoluzzi,^{b,c} Claudia Ghelarducci,^a Fabio Marchetti,^{a,b} Guido

Pampaloni *,a,b

^a Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa.

^b CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.

^c Ca' Foscari Università di Venezia, Dipartimento di Scienze Molecolari e Nanosistemi, Via Torino 155, I-30170 Mestre (VE), Italy

Supporting Information

	Solvent	R ¹ R ³	R^1 R^2 R^3
$R^1 = H$ $R^2 = R^3 = Me$	CDCl₃	3.02 (br, 1H, OH); 2.37 (s, 1H, ≡CH); 1.46 (s, 6H, CH₃)	4.72, 4.30 (d, 2H, =CH ₂ , J = 4.0 Hz); 1.57 (s, 6H, CH ₃)
R ¹ = H R ² = Me R ³ = Ft	CDCl₃	2.52 (br, 1H, OH); 2.39 (s, 1H, ≡CH); 2.11 (m, 2H, CH₂CH₃); 1.43 (s, 3H, CH₃); 0.99 (t, 3H, CH₂CH₃)	4.78, 4.26 (d, 2H, =CH ₂ , J = 3.9 Hz); 1.95 - 1.67 (m, 2H, CH ₂ CH ₃); 1.55 (s, 3H, CH ₃); 0.95 (t, 3H, CH ₂ CH ₃)
$R^{1} = H$ $R^{2} = R^{3} = Et$	CDCl₃	2.41 (s, 1H, ≡CH); 2.12 (br, 1H, OH); 1.69 – 1.62 (m, 4H, CH₂); 1.02 (t, 6H, CH₃)	4.85, 4.22 (d, 2H, =CH ₂ , J = 4.2 Hz); 1.98 - 1.64 (m, 4H, CH ₂ CH ₃); 0.96 (t, 6H, CH ₂ CH ₃)
R ¹ = H R ² = Me R ³ = Ph	CD₃CN	7.68 – 7.65 (m, 2H, <i>o</i> -Ph); 7.40 – 7.35 (m, 2H, <i>m</i> -Ph); 7.33 – 7.29 (m, 1H, <i>p</i> - Ph); 2.68 (s, 1H, ≡CH); 2.41 (br, 1H, OH); 1.80 (s, 3H, CH ₃)	7.49 – 7.46 (m, 2H, <i>o</i> -Ph); 7.43 – 7.35 (m, 3H, <i>m</i> -Ph + <i>p</i> -Ph); 4.92, 4.48 (d, 2H, =CH ₂ , J = 4.2 Hz); 1.95 (s, 1H, CH ₃)
$R^1 = H$ $R^2 = R^3 = Ph$	CD₃CN	7.63 – 7.60 (m, 4H, <i>o</i> -Ph); 7.36 – 7.32 (m, 4H, <i>m</i> -Ph); 7.30 – 7.26 (m, 2H, <i>p</i> - Ph); 2.88 (br, 1H, OH); 2.80 (s, 1H, ≡CH)	7.60 – 7.40 (m, 10H, Ph); 5.36, 4.71 (d, 2H, =CH ₂ , J = 4.2 Hz)
$R^1 = R^2 = R^3 = Ph$	CD₃CN	7.70 – 7.27 (m, 15H, Ph); 2.86 (br, 1H, OH)	8.00 – 7.44 (m, 15H, Ph); 5.03 (s, 1H, =CHPh)
R ¹ = Py R ² = R ³ = Me	CD₃CN	8.52 (d, 1H, Py); 7.71 (m, 1H, Py); 7.41 (d, 1H, Py); 7.29 (m, 1H, Py); 3.58 (br, 1H, OH); 1.53 (s, 6H, CH₃)	8.55 (d, 1H, Py); 7.78 – 7.73 (m, 2H, Py); 7.19 (m, 1H, Py); 5.91 (s, 1H, =CHPy); 1.72 (s, 6H, CH ₃)
		HO H	o V V n
n = 1	CDCl₃	2.70 (br, 1H, OH); 2.44 (s, 1H, ≡CH); 1.91 – 1.89 (m, 4H); 1.82 – 1.62 (m, 4H)	4.70, 4.30 (d, 2H, =CH ₂ , J = 3.8 Hz); 2.17 - 2.13 (m, 2H); 1.91 - 1.79 (m, 6H)
n = 2	CDCl₃	2.47 (s, 1H, ≡CH); 1.97 (br, 1H, OH); 1.93 – 1.87 (m, 2H); 1.76 – 1.67 (m, 2H); 1.62 – 1.20 (m, 6H)	4.70, 4.25 (d, 2H, =CH ₂ , J = 4.0 Hz); 1.97 - 1.89 (m, 2H); 1.70–1.57 (m, 7H); 1.32–1.22 (m, 1H)

Table S1. ¹H NMR data (δ /ppm) of propargyl alcohols and related carboxylation products.

4.77 4.77 4.26 4.26 4.26 4.26 1.93 1.17 1.155 0.095 0.095

-1.57

4.85 4.23 4.23 4.22 4.22 1.98 1.71 1.71 1.71 0.95 0.95

4.70 4.69 4.25 4.25 4.25 4.25 4.25 4.25 1.195 1.195 1.195 1.132 1.125 1.125

-7.60 -7.40 5.35 5.35 4.71

Figure S1. DFT-optimized geometries of $[Ag(\kappa^2-O_2CNEt_2)(PPh_3)_2]$ (left) and $[Ag(\kappa^2-O_2CNEt_2)(PPh_3)]$, right. C-PCM/ ω B97X/def2-SVP calculations, acetonitrile as continuous medium. Color map: Ag, cyan; P, orange; o, red; N, blue; C, grey. Hydrogen atoms are omitted for clarity. Selected computed bond lengths (Å) for $[Ag(\kappa^2-O_2CNEt_2)(PPh_3)_2]$ and $[Ag(\kappa^2-O_2CNEt_2)(PPh_3)]$: Ag-O 2.403 and 2.467 (left), 2.281 and 2.414 (right); Ag-P 2.451 and 2.561 (left), 2.381 (right).

Figure S2. DFT-optimized geometry of **INT1**. C-PCM/ωB97X/def2-SVP calculations, acetonitrile as continuous medium. Color map: Ag, cyan; P, orange; o, red; N, blue; C, grey; H, white. Hydrogen atoms bonded to C are omitted for clarity. Selected computed bond lengths (Å): Ag-O 2.360, 2.372; Ag-P 2.394; O---H 1.701; O-H 0.985.

Figure S3. DFT-optimized geometry of **INT2**. C-PCM/ωB97X/def2-SVP calculations, acetonitrile as continuous medium. Color map: Ag, cyan; P, orange; o, red; N, blue; C, grey; H, white. Hydrogen atoms bonded to C are omitted for clarity. Selected computed bond lengths (Å): Ag-O 2.274; Ag-C 2.359, 2.507; Ag-P 2.446.

Figure S4. DFT-optimized geometry of **INT3**. C-PCM/ ω B97X/def2-SVP calculations, acetonitrile as continuous medium. Color map: Ag, cyan; P, orange; o, red; N, blue; C, grey; H, white. Hydrogen atoms bonded to C are omitted for clarity. Selected computed bond lengths (Å): Ag-C 2.109; Ag-P 2.418.

Figure S5. DFT-optimized geometry of **INT4**. C-PCM/ ω B97X/def2-SVP calculations, acetonitrile as continuous medium. Color map: Ag, cyan; P, orange; o, red; N, blue; C, grey; H, white. Only the methylene hydrogen atoms are shown for clarity. Selected computed bond lengths (Å): Ag-O 2.059; Ag-P 2.337.

Figure S6. DFT-optimized geometry of **INT5**. C-PCM/ωB97X/def2-SVP calculations, acetonitrile as continuous medium. Color map: Ag, cyan; P, orange; o, red; N, blue; C, grey; H, white. Only the methylene hydrogen atoms are shown for clarity. Selected computed bond lengths (Å): Ag-O 2.183; Ag-P 2.470, 2.545.

Figure S7. DFT-optimized geometry of **INT6**. C-PCM/ωB97X/def2-SVP calculations, acetonitrile as continuous medium. Color map: Ag, cyan; P, orange; o, red; N, blue; C, grey; H, white. Only the methylene hydrogen atoms are shown for clarity. Selected computed bond lengths (Å): Ag-O 2.236; Ag-P 2.471, 2.508.

Figure S8. DFT-optimized geometry of **INT7**. C-PCM/ωB97X/def2-SVP calculations, acetonitrile as continuous medium. Color map: Ag, cyan; P, orange; o, red; N, blue; C, grey; H, white. Only the methylene hydrogen atoms are shown for clarity. Selected computed bond lengths (Å): Ag-O 2.333, 2.503; Ag-P 2.480, 2.493.

