Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Fig. S1 Mass spectrum of Sbat

Fig. S2 Mass spectrum of Ag-Sbat

Fig. S3 Mass spectrum of Cu-Sbat

Fig. S4 IR spectra of the Schiff base and its complexes

Fig. S5 A plot of log $(-\log (1 - x)/T^2)$ vs. 1000/T of silver complex based on Coats-Redfern equation

Fig. S6 A plot of log $(-\log (1 - x)/T^2)$ vs. 1000/T of copper complex based on Coats-Redfern equation

Fig. S7 The ESR spectrum of Cu-Sbat complex

Fig. S8 The IC₅₀ values of the studied Sbat Schiff base and its complex Ag-Sbat against MCF-7 and HCT-116 cell lines

	Ag-Sbat	Cu-Sbat
Effective Core	28.00000	10.00000
Core	57.97789	55.97833
	(99.9619% of 58)	(99.9613% of 56)
Valence	139.50109	138.53080
	(99.6436% of 140)	(99.6624% of 139)
Natural Minimal Basis	225.47899	204.50912
	(99.7695% of 226)	(99.7605% of 205)
Natural Rydberg Basis	0.52101	0.49088
	(0.2305% of 226)	(0.2395% of 205)

Table S1 Natural population of the total electrons in the complexes on the sub-shells usingB3LYP/LANL2DZ

Property	Urea	Sbat	Sbat Ag-Sbat	
μ		-1.8302	0.8845	2.8811
_y μ		2.0683	6.5057	0.0263
zμ		0.5491	1.0940	0.6637
μ(,D)	1.3197	2.8159	6.6551	2.9567
α_{xx} , au		-66.5128	-144.2016	-116.7465
α_{yy}		-140.6692	-163.4716	-149.2615
α_{zz}		-123.2214	-161.2235	-155.8040
α_{xy}		21.4380	-64.1960	41.3467
α_{xz}		-0.0708	2.9646	3.7723
α_{yz}		-1.8738	-0.6322	5.1133
<α>, esu		-1.632×10 ⁻²³	-2.316×10 ⁻²³	-2.084×10 ⁻²³
$\Delta \alpha$, esu		9.952×10 ⁻²⁴	2.705×10 ⁻²⁴	5.370×10 ⁻²⁴
β_{xxx} , au.		-236.4058	-159.5028	157.1280
β_{yyy}		47.9714	159.2092	-72.7442
β_{zzz}		0.2297	-34.0541	-28.8688
β_{xyy}		-20.1473	-92.0317	146.0700
β_{xxy}		-6.0145	44.0277	32.9440
β_{xxz}		-6.4757	-6.9564	33.2657
β_{xzz}		-4.9762	-46.5174	28.2583
β_{yzz}		-7.1374	-5.1148	-11.3472
β_{yyz}		1.7659	7.2477	-10.9779
β_{xyz}		-0.0682	43.9141	26.2119
<β>, esu	0.1947x10 ⁻³⁰	2.280x10 ⁻³⁰	3.106x10 ⁻³⁰	2.898 x10 ⁻³⁰

Table S2 Total static dipole moment (μ), the mean polarizibility $\langle \alpha \rangle$, the anisotropy of the polarizibility $\Delta \alpha$ and the first order hyperpolarizibility $\langle \beta \rangle$ for the complexes using B3LYP/LANL2DZ

State Orbi	Orbital	Coefficien	Coefficien f	AE aV	λ_{\max}				
	Orbital	t		$\Delta E, ev =$	Exp.	Calc.			
Ag-Sbat									
S1	96-100	0.1405	0.046	3.9	320	326			
	97-100	0.1551							
	98-100	0.6192							
	98-101	0.1485							
	98-102	0.1139							
	94-101	0.1007							
S2	97-100	0.2507	0.483	4.90	290	289			
	98-102	0.1152							
	99-100	0.2025							
	98-101	0.6001							
		(Cu-Sbat						
S 1	91A-99A	0.1062	0.015	3.9	327	335			
	93A-99A	0.1384							
	96A-99A	0.1948							
	97A-99A	0.4883							
	98A-100A	0.3602							
	89B-98B	0.1219							
	96B-99B	0.4668							
	96B-100B	0.1876							
	97B-100B	0.3762							
S2	93A-100A	0.662	0.433	4.13	298	300			
	94A-99A	0.1141							
	96A-99A	0.2710							
	97A-100A	0.1167							
	98A-102A	0.1942							
	87B-98B	0.1592							
	88B-98B	0.2910							
	92B-100B	0.1021							
	93B-100B	0.1391							
	94B-99B	0.4617							
	95B-99B	0.5221							
	96B-100B	0.1752							
	97B-102B	0.1582							

Table S3 Orbital involved in vertical transition, coefficient, oscillator strength, transition energy, observed and calculated wavelength for Ag-Sbat and Cu-Sbat