Electronic Supplementary Information (ESI)

Controllable preparation of magnetic carbon nanocomposites by pyrolysis of organometallic precursors, similar molecular structure but very different morphology, composition and properties

Zhijun Ruan,^a Jingwen Ran,^a Shanshan Liu,^a Yanmei Chen,^{*a} Xichao Wang,^a Jie Shi,^{*b} Lihong Zhu,^a Shengfang Zhao^a and Junqi Lin^{*a}

^{*a*} Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.

^b School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.

Scheme S1. Synthetic pathway of organometallic precursors M_C, M_N, M_O and M_S.

Figure S1. IR spectra of compounds 1-4 and organometallic precursors M_C-M_S.

Figure S2.TGA thermograms of organometallic precursors M_C , M_N , M_O and M_S measured under nitrogen at a heating rate of 10 °C min⁻¹.

Figure S3. HRTEM images of the CNTs obtained through pyrolysis of M_C (a, b) and M_N (c, d).

Figure S4. HRTEM images of the nanoparticles obtained through pyrolysis of Mo.

Figure S5. TEM images of the cobalt core/carbon sheath nanocable obtained through pyrolysis of M_s .

Figure S6. SEM-EDX spectra of the materials obtained from pyrolysis of M_C -S (a), M_N -S (b), M_O -S (c) and M_S -S (d).

Experimental Section

General procedure for the synthesis of compounds 1-4: A mixture of 2,7-Dibromofluorene or 3,6-Diiodocarbazole or 2,8-Diiododibenzofuran or 2,8-Diiododibenzothiophene (1.00 equiv), CuI (20% equiv), triphenylphosphine (PPh₃) (10% equiv), tetrakis (triphenylphosphine) palladium (Pd(PPh₃)₄) (5 mol%) and THF/triethylamine (2:1 in volume), was charged with argon, and then phenylacetylene (3.00 equiv) was added dropwise by syringe. The reaction was stirred at 50-80 °C for 12 h. After cooled to room temperature, the mixture was filtered. The filtrate was evaporated to remove the solvent. The crude product was purified by column chromatography.

Compound 1: White powder (1.22 g, 75%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.75 (m, 4H, ArH), 7.57 (m, 6H, ArH), 7.36 (m, 6H, ArH), 3.94 (s, 2H, -CH₂-). MS (EI), *m*/*z* [M⁺]: 366.2, calcd: 366.1.

Compound **2**: White powder (1.43 g, 78%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.27 (s, 2H, ArH), 8.24 (s, 1H, N-H), 7.64 (s, 2H, ArH), 7.59 (d, J = 9 Hz, 4H, ArH), 7.40 (m, 8H, ArH). MS (EI), *m*/*z* [M⁺]: 367.1, calcd: 367.1.

Compound **3**: White-off powder (0.58 g, 55%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.13 (s, 2H, ArH), 7.68 (d, J = 8.4 Hz, 2H, ArH), 7.57 (m, 6H, ArH), 7.38 (m, 6H, ArH). MS (EI), *m*/*z* [M⁺]: 368.2, calcd: 368.1.

Compound 4: White-off powder (0.62 g, 60%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.36 (s, 2H, ArH), 7.85 (d, J = 8.1 Hz, 2H, ArH), 7.60 (m, 6H, ArH), 7.37 (m, 6H, ArH). MS (EI), *m*/*z* [M⁺]: 384.2, calcd: 384.1.

Figure S8. MS (EI) spectrum of 1.

Figure S9. ¹H NMR spectrum of 2 in CDCl₃.

Figure S10. MS (EI) spectrum of 2.

Figure S11. ¹H NMR spectrum of **3** in CDCl₃.

Figure S12. MS (EI) spectrum of 3.

Figure S14. MS (EI) spectrum of 4.

Figure S16. ¹³C NMR spectrum of M_C in CDCl₃.

Figure S18. ¹³C NMR spectrum of M_N in CDCl₃.

200

[ppm]

Figure S20. ¹³C NMR spectrum of M_0 in CDCl₃.

Figure S21. ¹H NMR spectrum of M_8 in CDCl₃.

Figure S22. ¹³C NMR spectrum of M_s in CDCl₃.