Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Enhancement of coordinating flexibility in a Schiff–Mannich combo ligand: Forced generation of new Ni^{II}– $O_{phenoxo}$ – Ln^{III} – O_{alkoxo} – Ln^{III} array (Ln = Gd, Tb, Dy and Ho)

Riya Bag,^a Yeasin Sikdar,^a Pinaki Saha,^a Prasanta Ghosh,^b Michael G. B. Drew,^c Jinkui Tang,^{d*} Sanchita Goswami^{a*}

^aDepartment of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, India.

^bDepartment of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata–103, India

^cDepartment of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK

^dState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.

Contents	Page No.
Scheme S1 Synthetic route to complexes 1–4.	S3
Fig. S1 FT–IR spectrum of H_6L , complex $[Ni(H_4L \cdot 2H)](ClO_4)_2$, 1, 2, 3 and 4.	S3
Fig. S2 ESI–MS spectrum of $[Ni(H_4L \cdot 2H)](ClO_4)_2$ complex.	S4
Fig. S3 ESI–MS spectrum of 1.	S5
Fig. S4 ESI–MS spectrum of 2.	S6
Fig. S5 ESI–MS spectrum of 3.	S 7
Fig. S6 ESI–MS spectrum of 4.	S 8
Fig. S7 Experimental (red) and calculated (black) Powder X-ray diffraction	S9
spectrum of complex 1, 2, 3 and 4 to determine the phase purity.	
Fig. S8 Molecular structure of 1 with ellipsoids at the 20% probability level (Only	S10
the major component of the disorder is shown. Hydrogen atoms and solvent	
molecule were omitted for clarity).	
Fig. S9 Molecular structure of 2 with ellipsoids at the 20% probability level (Only	S11
the major component of the disorder is shown. Hydrogen atoms and solvent	
molecule were omitted for clarity).	

Fig. S10 Molecular structure of 4 with ellipsoids at the 20% probability level (Only	S12
the major component of the disorder is shown. Hydrogen atoms and solvent	
molecule were omitted for clarity).	
Fig. S11 A 2D corrugated sheet like structure formed by H–bonding and C–H $\cdots\pi$	S13
interaction along crystallographic axis b and c respectively.	
Fig. S12 Field dependence of magnetization for complex 1 at 1.9 K.	S14
Fig. S13 Field dependence of magnetization for complexes 2–4 at 1.9, 3.0 and 5 K.	S14
Inset: plots of the reduced magnetization M versus HT^{-1} .	
Fig. S14 Temperature dependence of in–phase (χ') and out–of–phase (χ'') ac signals	S15
for complexes 2–4 under a zero dc field at 997 Hz and 1.9 K.	
Fig. S15 Field dependence of in-phase (χ') and out-of-phase (χ'') ac signals for	S16
complexes 2–4 at 997 Hz and 1.9 K.	
Fig. S16 Temperature dependence of χ' and χ'' ac signals for complex 3 under a 800	S16
Oe dc field at 997 Hz.	
Fig. S17 Temperature dependence of χ' (left) and χ'' (right) ac signals for complex 3	S17
under a 800 Oe dc field.	
Fig. S18 Plots of $\ln (\chi''/\chi')$ vs. $1/T$ for complex 3 under a 800 Oe dc field. The solid	S17
line represents a fit of the results in the range of 30–1000 Hz.	
Table S1 $Ni_x^{II}Ln_y^{III}$ complexes found in literature with their magnetic property.	S18
Table S2 Crystal refinement parameters of A3 and complexes 1–4.	S35
Table S3 Continuous Shape Measures (CShMs) of lanthanide (Gd, Tb, Dy and Ho)	S37
centers in complex 1-4 relative to ideal 8/9-vertex polyhedra. The lowest CShMs	
value which corresponds to closest geometry is highlighted in bold.	
Table S4 Some important metric parameter of Ln_2O_2 core.	S39
Table S5 Hydrogen bonding parameter found in 1–4, (distances, Å, angles, (°)).	S40
Table S6 C–H··· π interaction parameter found in 1–4, (distances, Å).	S41

Scheme S1 Synthetic route to complexes 1–4.

Fig. S1 FT–IR spectrum of H_6L , complexes [Ni(H₄L·2H)](ClO₄)₂, 1, 2, 3 and 4.

Fig. S2 ESI–MS spectrum of $[Ni(H_4L \cdot 2H)](ClO_4)_2$ complex.

Fig. S3 ESI–MS spectrum of 1.

Fig. S4 ESI–MS spectrum of 2.

Fig. S5 ESI–MS spectrum of 3.

Fig. S6 ESI–MS spectrum of 4.

Fig. S7 Experimental (red) and calculated (black) Powder X–ray diffraction spectrum of complex 1, 2, 3 and 4 to determine the phase purity.

Fig. S8 Molecular structure of 1 with ellipsoids at the 20% probability level (Only the major component of the disorder is shown. Hydrogen atoms and solvent molecule were omitted for clarity).

Fig. S9 Molecular structure of 2 with ellipsoids at the 20% probability level (Only the major component of the disorder is shown. Hydrogen atoms and solvent molecule were omitted for clarity)..

Fig. S10 Molecular structure of **4** with ellipsoids at the 20% probability level (Only the major component of the disorder is shown. Hydrogen atoms and solvent molecule were omitted for clarity).

Fig. S11 A 2D corrugated sheet like structure formed by H–bonding and C–H··· π interaction along crystallographic axis *b* and *c* respectively.

Fig. S12 Field dependence of magnetization for complex 1 at 1.9 K.

Fig. S13 Field dependence of magnetization for complexes **2**–4 at 1.9, 3.0 and 5 K. Inset: plots of the reduced magnetization M versus HT^{-1} .

Fig. S14 Temperature dependence of in–phase (χ') and out–of–phase (χ'') ac signals for complexes 2–4 under a zero dc field at 997 Hz and 1.9 K.

Fig. S15 Field dependence of in–phase (χ') and out–of–phase (χ'') ac signals for complexes 2–4 at 997 Hz and 1.9 K.

Fig. S16 Temperature dependence of χ' and χ'' ac signals for complex 3 under a 800 Oe dc field at 997 Hz.

Fig. S17 Temperature dependence of χ' (left) and χ'' (right) ac signals for complex **3** under a 800 Oe dc field.

Fig. S18 Plots of ln (χ''/χ') vs. 1/T for complex **3** under a 800 Oe dc field. The solid line represents a fit of the results in the range of 30–1000 Hz.

Sl. No.	Ni ^{II} /Ln ^{III} core	Ln ^{III}	Magnetic property of Ni _x ¹¹ Ln _y ¹¹¹ complexes	Reference
1		Gd, Tb, Dy, Ho	Slow magnetic relaxation [NiDy ₂] U _{eff} [NiDy ₂] = 2.94 K	This work
		<u>NiLr</u>	<u>1</u>	
1		Ce, Nd, Dy, Er, Yb, Eu	Slow magnetic relaxation [NiCe], [NiNd], [NiDy], [NiEr], [NiYb],	Dalton Trans., 2010 48
		, , ,	U_{eff} [NiCe] = 4.7 K	641
	•		U_{eff} [NiNd] = 15.9 K	
			U_{eff} [NiDy] =7.7 K	
2		Ce, Gd, Dy	Slow magnetic relaxation [NiLn]	<i>Dalton</i> <i>Trans.,</i> 2019, 48 , 13943
		Tb, Eu, Gd,	Single molecule magnet [NiTb] U _{eff} [NiTb] = 7.69 K	
3		Но	Ferromagnetic [NiGd] $J_{NiGd} = +0.87 \text{ cm}^{-1}$	Dalton Trans., 2017, 46 ,
		Tb, Dy, Eu,	Single molecule magnet [NiDy] U _{eff} [NiDy] = 5.14 K	12558
		Gd, Ho	Ferromagnetic [NiGd] $J_{NiGd} = + 1.83 \text{ cm}^{-1}$	

Table S1 $Ni_x^{II}Ln_y^{III}$ complexes found in literature with their magnetic property.

	La, Dy	Antiferromagnetic [NiDy]	
4	Dy	Antiferromagnetic	New J. Chem., 2016, 40 , 6998
	La, Tb	Ferromagnetic [NiTb] _n	
5	Gd, Dy	Slow magnetic relaxation [NiDy]	CrystEngC omm, 2016, 18 , 4779
6	Gd, Tb, Dy	Single molecule magnet [NiDy] U _{eff} = 16.9 K	New J. Chem., 2015, 39 , 3467
7	Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb	Single molecule magnet [NiTb], [NiDy]	<i>Inorg.</i> <i>Chim.</i> Acta , 2015, 435 , 274

8	Gd	Ferromagnetic $J_{NiGd} = + 1.31 \text{ cm}^{-1}$	<i>Chem. Eur.</i> <i>J.</i> , 2014, 20 , 14235
9	Tb, Gd, Dy, Ho, Er, Y	Slow magnetic relaxation [NiTb], [NiDy], [NiHo]	<i>Dalton</i> <i>Trans.</i> , 2014, 43 , 8921
10	Gd, Pr	Ferromagnetic [NiGd] Antiferromagnetic [NiPr]	<i>Dalton</i> <i>Trans.</i> , 2014, 43 , 17375
11	Eu, Gd, Dy, Ho,	Ferromagnetic [NiGd] $J_{NiGd} = 1.56 \text{ cm}^{-1}$	New J. Chem.,
	La, Sm, Eu	_	2013, 37 , 2280
12	Gd, Tb, Dy	Single molecule magnet [NiTb] U _{eff} = 14.9 K	<i>Inorg.</i> <i>Chem.</i> , 2013, 52 , 6160

15	Ce, Dy	Antiferromagnetic [NiDy]	<i>Dalton</i> <i>Trans.</i> , 2012, 41 , 13755
16	Yb	Ferromagnetic [NiYb]	<i>Inorg.</i> <i>Chem.</i> , 201 2, 51 , 11279
17	La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er	Slow magnetic relaxation [NiDy]	<i>Inorg.</i> <i>Chem.</i> , 201 1, 50 , 5890
18	Dy	Single molecule magnet [NiDy]	<i>Inorg.</i> <i>Chem.</i> , 2011, 50 , 7268
19	Gd	Antiferromagnetic [NiGd] $J_{NiGd} = -0.22 \text{ cm}^{-1}$	<i>Dalton</i> <i>Trans.</i> , 2010, 39 , 5020
20	Ce, Sm, Gd	Antiferromagnetic [NiCe], [NiSm]	<i>Inorg.</i> <i>Chem.</i> , 2010, 49 , 9012

21	Pr	Antiferromagnetic [NiPr]	Eur. J. Inorg. Chem., 2010, 2768
22	Eu, Gd, Tb, Dy,	Ferromagnetic [NiGd], [NiTb], [NiDy]	Inorg. Chem., 2008, 47 , 5736
23	Ce, Eu, Nd, Tb, Er	Antierromagnetic [NiCe], [NiEr] Ferromagnetic [NiNd], [NiTb]	Inorg. Chem., 2005, 44 , 3524
24	Gd	Ferromagnetic [NiGd]	<i>Chem.</i> <i>Commun.</i> , 2004, 1048
25	Gd	Ferromagnetic [NiGd] $J_{NiGd} = +0.56 \text{ cm}^{-1}$	Inorg. Chem., 2002, 41 , 605
26	La	_	Inorg. Chem., 1999, 38 , 1351

27		La	_	<i>Inorg.</i> <i>Chem.</i> , 1999, 38 , 1351
28	$\left(\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \end{array}\right)_{n}$	Sm, Er, Sm Yb	_	Inorg. Chem., 1998, 37 , 4828
29		Dy	Antierromagnetic [NiDy]	<i>Chem. Eur.</i> J., 1998, 4 , 1616
30		Gd	Ferromagnetic [NiGd]	Inorg. Chem., 1997, 36 , 4284
		<u>NiLn</u> 2	2	
1		Dy	Single molecule magnet [NiDy ₂]	<u>Inorg.</u> Chem., 201 5, 54 , 4337
2		Dy	Ferromagnetic [NiGd]	<i>Chem. Eur.</i> <i>J.</i> , 2007, 13 , 1602
3		La, Tb, Dy, Ho, Er	Single molecule magnet [NiDy ₂]	Polyhedron , 2005, 24 , 2588

4		Yb, Lu	_	J. Chem. Soc., Dalton Trans., 1998, 959
		Ni ₂ L	<u>n</u>	
1	\checkmark	La	Antiferromagnetic [Ni ₂ La]	<i>Dalton</i> <i>Trans.</i> , 2014, 43 , 17375
2	$\checkmark \checkmark \diamond$	Gd, Tb, Dy, Ho	Slow magnetic relaxation [Ni ₂ Dy]	<i>Chem.</i> <i>Asian J.</i> , 2014, 9 , 1876
3		Gd	Ferromagnetic [Ni ₂ Gd]	Inorg. Chem., 2009 48
	$ \diamond \diamond \diamond $	Gd	Ferromagnetic [Ni ₂ Gd] $J_{NiGd} = +0.91 \text{ cm}^{-1}$	5555
4		Gd, Yb	Ferromagnetic [Ni ₂ Ln]	Inorg. Chem., 2008, 47 , 2280
5		La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er	Single molecule magnet [Ni ₂ Dy] U _{eff} = 10.8 K	Inorg. Chem., 2008, 47 , 4918
6		Eu	_	Eur. J. Inorg. Chem., 2008, 5235

7		La–Lu except for Pm	Weakly antiferromagnetic [Ni ₂ Ce], [Ni ₂ Pr], and [Ni ₂ Nd] Ferromagnetic [Ni ₂ Gd], [Ni ₂ Tb], [Ni ₂ Dy], [Ni ₂ Ho], and [Ni ₂ Er].	<i>Inorg.</i> <i>Chem.</i> , 200 7, 46 , 3492
8		Gd	Ferromagnetic [Ni ₂ Gd]	Chem. Commun., 2004, 1048
9		Pr, Sm, Tb, Er, Lu	Ferromagnetic [Ni ₂ Gd], [Ni ₂ Tb], [Ni ₂ Er]	<i>Inorg.</i> <i>Chem.</i> , 2003, 42 , 1576
10		La, Dy, Yb	Antiferromagnetic [Ni ₂ Ln]	Inorg. Chem., 2000, 39 , 508
		<u>Ni₂L</u>	<u>n</u> 2	
1	V	Gd, Tb, Dy, Ho	_	New J. Chem., 2020, 44 , 4812
2		Gd, Tb, Dy, Ho Tb, Dy, Ho, Er, Tm, Yb	Slow magnetic relaxation $[Ni_2Tb_2]$ and $[Ni_2Dy_2]$ $U_{eff} [Ni_2Tb_2] = 13.6 \text{ K}$ $U_{eff} [Ni_2Dy_2] = 11.52 \text{ K}$	New J. Chem., 2020, 44 , 4812 Dalton Trans., 2017, 46 , 12558

4	•••••	Dy	Single molecule magnet [Ni ₂ Dy ₂]	<i>Chem. Eur.</i> <i>J.</i> , 2016, 22 , 18840
5	000	La, Gd, Tb, Dy	Ferromagnetic [Ni ₂ Ln ₂]	New J. Chem., 2016, 40 , 6998
6	111	Tb, Dy, Ho, Er, Tm, Yb, Lu	Ferromagnetic[Ni ₂ Tb ₂] and [Ni ₂ Dy ₂]	Polyhedron , 2015, 85 , 697
7		Dy, Tb, Ho, Lu	Single molecule magnet $[Ni_2Dy_2]$ $U_{eff} = 19.0 \text{ K}$	<i>Chem. Eur.</i> <i>J.</i> , 2014, 20 , 14235
8		Dy, Gd	Slow magnetic relaxation [Ni ₂ Dy ₂] U _{eff} = 7.4 K	<i>Inorg.</i> <i>Chem.</i> , 201 4, 22 , 12092
9		La, Gd, Tb, Dy, Ho	Slow magnetic relaxation [Ni ₂ Dy ₂]	<i>Inorg.</i> <i>Chem.</i> , 2014, 53 , 9785
10		Gd, Tb, Dy	Single molecule magnet $[Ni_2Tb_2]$ and $[Ni_2Dy_2]$ $U_{eff} [Ni_2Tb_2] = 12.2 \text{ K/6.1 K}$ $U_{eff} [Ni_2Dy_2] = 18.1 \text{ K/14.5 K}$	<i>Inorg.</i> <i>Chem.</i> , 2013, 52 , 7218
11		La, Gd, Tb, Dy	Antiferromagnetic [Ni ₂ Dy ₂]	<i>Inorg.</i> <i>Chem.</i> , 201 2, 51 , 10211

12		La, Tb, Dy	Antiferromagnetic [Ni ₂ Ln ₂]	<i>Inorg.</i> <i>Chem.</i> , 201 2, 51 , 10211
13		Gd, Dy	Weak ferromagnetic Ni…Ln interaction and weak antiferromagnetic Ln…Ln interaction	Dalton Trans., 2012, 41 , 2320
14		Yb	_	<i>Inorg.</i> <i>Chem.</i> , 201 1, 50 , 5890
15	V	Dy, Tb, Gd	Slow magnetic relaxation [Ni ₂ Dy ₂]	<i>Inorg.</i> <i>Chem.</i> , 2011, 50 , 1304
16		Tb, Dy	Single molecule magnet [Ni ₂ Dy ₂] U _{eff} = 18–28 K	<i>Inorg.</i> <i>Chem.</i> , 2011, 50 , 11604
17		Dy	Single molecule magnet $[Ni_2Dy_2]$ $U_{eff} = 13.6 \text{ K}$ Single molecule magnet $[Ni_2Dy_2]_n$	Dalton Trans., 2010, 39 , 4802
			$U_{eff} = 17.4 \text{ K}$	

18	n	Gd	Antiferromagnetic [Ni ₂ Gd ₂]	<i>Inorg.</i> <i>Chem.</i> , 2005, 44 , 5241
19		Gd	Ferromagnetic [Ni ₂ Gd ₂]	<i>Chem.</i> <i>Commun.</i> , 2004, 1048
20		Er	Antiferromagnetic [Ni ₂ Er ₂]	J. Chem. Soc., Dalton Trans., 1997, 1665
		<u>Ni₂Lı</u>	<u>1</u> 3	
1		Dy ,Tb, Gd, Ho, Er	Single molecule magnet [Ni ₃ Dy ₃] U _{eff} = 10 K	<i>Inorg.</i> <i>Chem.</i> , 201 4, 53 , 7815
2	the second se	Gd, Dy, Tb, Ho	Single molecule magnet [Ni ₂ Dy ₃] U _{eff} = 85 K	<i>Inorg.</i> <i>Chem.</i> , 2013, 52 , 13078
		<u>Ni₂Lı</u>	<u>n</u> 4	
1		Gd, Dy	Ferromagnetic [Ni ₂ Gd ₄] Slow magnetic relaxation [Ni ₂ Dy ₄]	<i>RSC Adv.</i> , 2014, 4 , 53870

	<u>Ni₃Ln</u>						
1		Gd, Dy	Single molecule magnet [Ni ₃ Dy]	Inorg. Chem., 2010, 49 , 9737			
		<u>Ni₃Lı</u>	<u>n_</u>				
1		La, Ce, Eu	_	<i>ChemistryS</i> <i>elect</i> , 2017, 2 , 7865			
<u>Ni₄Ln</u>							
1		Gd, Tb, Dy, Ho	Ferromagnetic [Ni ₄ Ln] $J_{NiGd} = +0.34 \text{ cm}^{-1} [Ni_4Gd]$	Eur. J. Inorg. Chem., 2014, 3393			
<u>Ni₄Ln₂</u>							
1		Gd, Tb, Dy, Ho	Single molecule magnet $[Ni_4Tb_2], [Ni_4Dy_2]$ and $[Ni_4Ho_2]$ $U_{eff} [Ni_4Tb_2] = 13 \text{ K}$ $U_{eff} [Ni_4Dy_2] = 20 \text{ K}$ $U_{eff} [Ni_4Ho_2] = 19 \text{ K}$	<i>Cryst.</i> <i>Growth</i> <i>Des.</i> , 2020, 20 , 7300			

2	Dy, Tb, Ho	Single molecule magnet $[Ni_4Tb_2]$ and $[Ni_4Dy_2]$ U_{eff} $[Ni_4Tb_2] = 26.3 K$ U_{eff} $[Ni_4Dy_2] = 23.0 K$ Single molecule magnet $[Ni_4Tb_2]$ and $[Ni_4Dy_2]$ U_{eff} $[Ni_4Tb_2] = 30.6 K$ U_{eff} $[Ni_4Dy_2] = 26.0 K$	<i>Inorg.</i> <i>Chem.</i> , 201 9, 58 , 12184
3	Gd, Tb, Dy, Ho	Single molecule magnet [Ni ₄ Tb ₂], [Ni ₄ Dy ₂] Slow magnetic relaxation [Ni ₄ Ho ₂]	<i>Inorg.</i> <i>Chem.</i> , 2014, 53 , 3519
4	Gd, Dy	Antiferromagnetic [Ni ₄ Gd ₂] Slow magnetic relaxation [Ni ₄ Dy ₂]	Inorg. Chem., 2012, 51 , 2699
	<u>Ni₄L</u>	<u>n</u> ₄	
1	Y, Gd, Tb, Dy, Ho, Er	Ferromagnetic [Ni ₄ Ln ₄] $J_{NiGd} =+ 0.86 \text{ cm}^{-1} [Ni_4Gd_4]$	ACS Omega, 2018, 3 , 5202
2	Dy ,Tb, Gd, Ho	Single molecule magnet [Ni ₄ Dy ₄] Slow magnetic relaxation [Ni ₄ Tb ₄]	<i>Inorg.</i> <i>Chem.</i> , 201 6, 55 , 8422

3	Sm, Gd	Ferromagnetic [Ni ₄ Gd ₄]	Dalton Trans., 2014, 43 , 9136
	<u>Ni₅Lr</u>	<u>1</u> ₃	
1	Gd, Dy	Ferromagnetic [Ni ₅ Gd ₃] Slow magnetic relaxation [Ni ₅ Dy ₃]	Dalton Trans., 2013, 4 2, 5298
	<u>Ni₅Lr</u>	<u>1</u> 4	
1	Eu, Gd, Dy	Single molecule magnet [Ni ₅ Dy ₄] Ferromagnetic [Ni ₅ Gd ₄] Ferromagnetic [Ni ₅ Eu ₄]	Dalton Trans., 2018, 47 , 16850
	<u>Ni₆Lr</u>	<u>1</u> 3	
1	Gd, Dy, Er	Single molecule magnet $[Ni_6Dy_3]$ $U_{eff} = 24 \text{ K}$ Antiferromagnetic $[Ni_6Er_3]$ Ferromagnetic $[Ni_6Gd_3]$	<i>Inorg.</i> <i>Chem.</i> , 201 5, 54 , 7089

<u>Ni₆Ln₆</u>

Color code: Ni^{II}: Deep green, Ln^{III}: Light green, Na: Violet, Phosphorous: Orange, Oxygen: Red, Nitrogen: Blue, Chloride: Green

Complex	A3	1	2	3	4
Chemical formula	C ₂₈ H ₄₂ Cl ₂ N ₄ Ni O ₁₄	C ₃₀ H ₃₉ Gd ₂ N ₉ NiO ₁₈	C ₃₀ H ₃₉ N ₉ Ni O ₁₈ Tb ₂	C ₃₀ H ₃₉ Dy ₂ N ₉ NiO ₁₈	C ₃₀ H ₃₉ Ho ₂ N ₉ NiO ₁₈
Formula weight	788.25	1186.89	1190.27	1197.41	1202.27
Crystal color, habit	Orange block	Orange block	Orange block	Orange block	Orange block
Temperature (K)	296(2)	298(2)	297(2)	293(2)	296(2)
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P^{1}	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_1/c$
Unit cell dimensions <i>a</i> (Å) <i>b</i> (Å)	11.4638(7) 12.0205(8)	12.8995(7) 18 7091(10)	12.8433(12) 18.6429(17)	12.8472(8) 18.6399(12)	12.8244(6) 18 6644(8)
c(Å)	14.4633(9)	18.0277(10)	17.9984(16)	17.9789(11)	17.9432(8)
β(deg)	68.567(2)	109.147(2)	108.867(4)	108.883(2)	108.793(2)
Volume (Å ³), Z	1798.5(2)	4110.1(4)	4077.9(7)	4073.7(4)	4065.9(3)
Density (mg m ⁻³)	1.456	1.918	1.942	1.956	1.967
Absolute coefficient (mm ⁻¹)	0.757	3.727	3.973	4.173	4.398
F(000)	824.0	2328.0	2344.0	2352.0	2360.0
Crystal size (mm)	0.28×0.22× 0.17	0.32×0.25× 0.25	0.30×0.23× 0.22	0.28×0.22× 0.16	0.27×0.26× 0.18

Table S2 Crystal refinement parameters of A3 and complexes 1–4.

Complex	A3	1	2	3	4
θ range (deg)	1.514–24.997	2.484-	2.778-	2.492-	2.490-
		26.353	26.094	25.698	25.714
Limiting indices	-13≤h≤13 -14≤k≤13 -17≤l≤17	-16≤h≤16 -23≤k≤23 -22≤l≤22	-15≤h≤15 -22≤k≤23 -22≤l≤22	-15≤h≤15 -22≤k≤22 -21≤l≤21	-15≤h≤15 -22≤k≤22 -21≤l≤21
Reflections collected	20941	59314	53741	55888	40778
Unique	6335	8394	8086	7755	7759
reflections (R _{int})	(0.0244)	(0.0226)	(0.0365)	(0.0217)	(0.0484)
Reflections with I>2σ(I) Completeness to θ	5231 99.6 % (24.99)	7190 99.5 %(25.24)	6525 99.0 % (25.24)	6686 99.5 % (25.24)	5930 99.3 % (25.24)
Data/Resistant /Parameters	6310/76/451	8352/51/571	8003/34/569	7720/21/564	7704/52/571
GOOF on F ²	1.106	1.180	1.059	1.225	1.022
Final R indices [I > 2σ(I)]	0.0787 ^{b,} (0.2523°)	0.0372 ^{b,} (0.0757°)	0.0686 ^{b,} (0.1618°)	0.0376 ^{b,} (0.0818 ^c)	0.0411 ^{b,} (0.0922°)
R indices (all data)	0.0902 ^b , (0.2682 ^c)	0.0475 ^b , (0.0834 ^c)	0.0856 ^b , (0.1781 ^c)	0.0484 ^b , (0.0933 ^c)	0.0630 ^b , (0.1043 ^c)
Max/Min residual peaks (e Å ⁻³)	1.129/-0.593	1.510/-0.939	4.194/-1.799	1.598/-0.859	1.315/-1.053

^aGraphite monochromator, ^bR₁ = $\Sigma(|F_o| - |F_c|)/\Sigma|F_o|$. ^cwR₂ = { $\Sigma[w(|F_o|^2 - |F_c|^2)^2]/\Sigma[w(|F_o|^2)^2]$ }^{1/2}

8-vertex polyhedra							
	Gd1	Tb1	Dy1	Ho1	Symmetry	Ideal shape	
OP–8	32.417	32.239	32.187	32.227	D_{8h}	Octagon	
HPY-8	22.510	22.867	22.934	23.121	C_{7v}	Heptagonal pyramid	
HBPY-8	16.233	16.407	16.424	16.529	D_{6h}	Hexagonal bipyramid	
CU–8	12.284	12.135	12.063	11.900	Oh	Cube	
SAPR-8	3.535	3.368	3.337	3.295	D_{4d}	Square antiprism	
TDD-8	1.415	1.356	1.290	1.240	D_{2d}	Triangular	
						dodecahedron	
JGBF-8	12.399	12.496	12.412	12.406	D_{2d}	Johnson gyrobifastigium	
						J26	
JETBPY-	26.879	27.192	27.211	27.532	D_{3h}	Johnson elongated	
8						triangular bipyramid J14	
JBTPR-8	2.488	2.474	2.401	2.410	C_{2v}	Biaugmented trigonal	
						prism J50	
BTPR-8	2.214	2.196	2.175	2.177	C_{2v}	Biaugmented trigonal	
						prism	
JSD-8	3.116	3.071	2.959	2.920	D_{2d}	Snub diphenoid J84	
TT–8	12.658	12.494	12.412	12.242	Td	Triakis tetrahedron	
ETBPY-8	23.810	24.093	24.219	24.295	D_{3h}	Elongated trigonal	
						bipyramid	
			9-ve	rtex polyh	edra		
	Gd2	Tb2	Dy2	Ho2	Symmetry	Ideal shape	
EP-9	33.396	33.646	33.630	33.888	D_{9h}	Enneagon	
OPY-9	24.246	24.274	24.416	24.525	$C_{\mathcal{8} v}$	Octagonal pyramid	
HBPY-9	17.131	17.329	17.273	17.344	D_{7h}	Heptagonal bipyramid	

Table S3 Continuous Shape Measures (CShMs) of lanthanide (Gd, Tb, Dy and Ho) centers in complexes **1–4** relative to ideal 8/9–vertex polyhedra. The lowest CShMs value which corresponds to closest geometry is highlighted in bold.

JCCU-9 8.330 8.416 8.324 8.376 $C_{4\nu}$ Capped cube J8CCU-9 6.938 7.039 6.938 6.995 $C_{4\nu}$ Spherical-relaxed capped cubeJCSAPR- 4.408 4.403 4.278 4.233 $C_{4\nu}$ Capped square antiprism J10OCSAPR-9 3.364 3.360 3.249 3.220 $C_{4\nu}$ Spherical capped square antiprismJTCTPR- 3.888 3.860 3.768 3.747 D_{3h} Tricapped trigonal prism J51TCTPR-9 3.116 3.049 2.957 2.894 D_{3h} Spherical tricapped trigonal prismJTDIC-9 11.717 11.785 11.806 11.766 $C_{3\nu}$ Tridiminished icosahedron J63HH-9 9.176 9.334 9.262 9.313 $C_{2\nu}$ Hula-hoopMFF-9 2.642 2.658 2.537 2.528 C_s Muffin	JTC-9	12.029	12.148	12.223	12.268	C_{3v}	Johnson triangular cupola
JCCU-9 8.330 8.416 8.324 8.376 $C_{4\nu}$ Capped cube J8CCU-9 6.938 7.039 6.938 6.995 $C_{4\nu}$ Spherical-relaxed capped cubeJCSAPR- 4.408 4.403 4.278 4.233 $C_{4\nu}$ Capped square antiprism J10Q 3.364 3.360 3.249 3.220 $C_{4\nu}$ Spherical capped square antiprismJTCTPR- 3.888 3.860 3.768 3.747 D_{3h} Tricapped trigonal prism J51TCTPR-9 3.116 3.049 2.957 2.894 D_{3h} Spherical tricapped trigonal prismJTDIC-9 11.717 11.785 11.806 11.766 $C_{3\nu}$ Tridiminished icosahedron J63HH-9 9.176 9.334 9.262 9.313 $C_{2\nu}$ Hula-hoopMFF-9 2.642 2.658 2.537 2.528 C_s Muffin							J3
CCU-9 6.938 7.039 6.938 6.995 $C_{4\nu}$ Spherical-relaxed capped cube JCSAPR- 4.408 4.403 4.278 4.233 $C_{4\nu}$ Capped square antiprism 9 J10 CSAPR-9 3.364 3.360 3.249 3.220 $C_{4\nu}$ Spherical capped square antiprism JTCTPR- 3.888 3.860 3.768 3.747 D_{3h} Tricapped trigonal prism JTCTPR- 3.888 3.860 3.768 3.747 D_{3h} Spherical tricapped 9 TCTPR-9 3.116 3.049 2.957 2.894 D_{3h} Spherical tricapped 17DIC-9 11.717 11.785 11.806 11.766 $C_{3\nu}$ Tridiminished icosahedron J63 HH-9 9.176 9.334 9.262 9.313 $C_{2\nu}$ Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C_s Muffin	JCCU–9	8.330	8.416	8.324	8.376	C_{4v}	Capped cube J8
cubeJCSAPR-4.4084.4034.2784.233 $C_{4\nu}$ Capped square antiprism93.3643.3603.2493.220 $C_{4\nu}$ Spherical capped square antiprismCSAPR-93.3643.3603.7683.747 D_{3h} Tricapped trigonal prism J51JTCTPR-3.8883.8603.7683.747 D_{3h} Tricapped trigonal prism J51TCTPR-93.1163.0492.9572.894 D_{3h} Spherical tricapped trigonal prismJTDIC-911.71711.78511.80611.766 $C_{3\nu}$ Tridiminished icosahedron J63HH-99.1769.3349.2629.313 $C_{2\nu}$ Hula-hoopMFF-92.6422.6582.5372.528 C_s Muffin	CCU–9	6.938	7.039	6.938	6.995	C_{4v}	Spherical-relaxed capped
JCSAPR-4.4084.4034.2784.233 $C_{4\nu}$ Capped square antiprism9J10CSAPR-93.3643.3603.2493.220 $C_{4\nu}$ Spherical capped square antiprismJTCTPR-3.8883.8603.7683.747 D_{3h} Tricapped trigonal prism9JTCTPR-3.8883.8603.7683.747 D_{3h} Tricapped trigonal prism9JTCTPR-93.1163.0492.9572.894 D_{3h} Spherical tricapped trigonal prismJTDIC-911.71711.78511.80611.766 $C_{3\nu}$ Tridiminished icosahedron J63HH-99.1769.3349.2629.313 $C_{2\nu}$ Hula-hoopMFF-92.6422.6582.5372.528 C_s Muffin							cube
9 J10 CSAPR-9 3.364 3.360 3.249 3.220 C _{4ν} Spherical capped square antiprism JTCTPR- 3.888 3.860 3.768 3.747 D _{3h} Tricapped trigonal prism JTCTPR- 3.888 3.860 3.768 3.747 D _{3h} Tricapped trigonal prism 9 TCTPR-9 3.116 3.049 2.957 2.894 D _{3h} Spherical tricapped trigonal prism JTDIC-9 11.717 11.785 11.806 11.766 C _{3ν} Tridiminished icosahedron J63 HH-9 9.176 9.334 9.262 9.313 C _{2ν} Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C _s Muffin	JCSAPR-	4.408	4.403	4.278	4.233	C_{4v}	Capped square antiprism
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9						J10
JTCTPR- 3.888 3.860 3.768 3.747 D_{3h} Tricapped trigonal prism 9 J51 TCTPR-9 3.116 3.049 2.957 2.894 D_{3h} Spherical tricapped TCTPR-9 3.116 3.049 2.957 2.894 D_{3h} Spherical tricapped TTDIC-9 11.717 11.785 11.806 11.766 C_{3v} Tridiminished ICOSahedron J63 HH-9 9.176 9.334 9.262 9.313 C_{2v} Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C_s Muffin	CSAPR-9	3.364	3.360	3.249	3.220	C_{4v}	Spherical capped square
JTCTPR- 3.888 3.860 3.768 3.747 D_{3h} Tricapped trigonal prism 9 J51 TCTPR-9 3.116 3.049 2.957 2.894 D_{3h} Spherical tricapped trigonal prism JTDIC-9 11.717 11.785 11.806 11.766 $C_{3\nu}$ Tridiminished icosahedron J63 HH-9 9.176 9.334 9.262 9.313 $C_{2\nu}$ Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C_s Muffin							antiprism
9 J51 TCTPR-9 3.116 3.049 2.957 2.894 D _{3h} Spherical tricapped trigonal prism JTDIC-9 11.717 11.785 11.806 11.766 C _{3ν} Tridiminished icosahedron J63 HH-9 9.176 9.334 9.262 9.313 C _{2ν} Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C _s Muffin	JTCTPR-	3.888	3.860	3.768	3.747	D_{3h}	Tricapped trigonal prism
TCTPR-9 3.116 3.049 2.957 2.894 D_{3h} Spherical tricapped trigonal prismJTDIC-9 11.717 11.785 11.806 11.766 C_{3v} Tridiminished icosahedron J63HH-9 9.176 9.334 9.262 9.313 C_{2v} Hula-hoopMFF-9 2.642 2.658 2.537 2.528 C_s Muffin	9						J51
JTDIC-9 11.717 11.785 11.806 11.766 $C_{3\nu}$ Tridiminished icosahedron J63 HH-9 9.176 9.334 9.262 9.313 $C_{2\nu}$ Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C_s Muffin	TCTPR-9	3.116	3.049	2.957	2.894	D_{3h}	Spherical tricapped
JTDIC-9 11.717 11.785 11.806 11.766 $C_{3\nu}$ Tridiminished icosahedron J63 HH-9 9.176 9.334 9.262 9.313 $C_{2\nu}$ Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C_s Muffin							trigonal prism
HH-9 9.176 9.334 9.262 9.313 $C_{2\nu}$ Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C_s Muffin	JTDIC-9	11.717	11.785	11.806	11.766	C_{3v}	Tridiminished
HH-9 9.176 9.334 9.262 9.313 $C_{2\nu}$ Hula-hoop MFF-9 2.642 2.658 2.537 2.528 C_s Muffin							icosahedron J63
MFF-9 2.642 2.658 2.537 2.528 C _s Muffin	HH–9	9.176	9.334	9.262	9.313	C_{2v}	Hula-hoop
	MFF-9	2.642	2.658	2.537	2.528	C_s	Muffin

	Complex	1	2	3	4
Dihedral Angle	Angle between the Plane of O5–Ln1–O2 and O5–Ln2–O2	1.31(18)	1.2(4)	1.06(19)	1.0(3)
Torsional angle	O5-Ln2-O2-Ln1	1.13(13)	1.0(3)	0.91(13)	0.85(19)
Bridge	Ln1–O2–Ln2	108.57(16)	108.8(3)	108.62(16)	108.9(2)
angle	Ln1–O5–Ln2	108.52(16)	108.9(3)	108.68(17)	109.1(2)
Distance	Ln1–O1	2.418(3)	2.399(8)	2.387(4)	2.386(6)
	Ln1–O2	2.284(3)	2.271(7)	2.260(3)	2.251(4)
	Ln1–O4	2.474(3)	2.467(6)	2.458(3)	2.458(4)
	Ln1–O5	2.293(4)	2.269(8)	2.263(4)	2.244(5)
	Ln2–O2	2.286(3)	2.262(8)	2.259(4)	2.243(5)
	Ln2–O5	2.280(3)	2.260(6)	2.255(3)	2.243(4)
	Ln…Ln(intramolecular)	3.7108(6)	3.686(8)	3.670(6)	3.655(5)
	Ln…Ln(closest distance from packing)	7.4798(6)	7.4876(9)	7.4988(6)	7.5211(5)

Table S4 Some important metric parameter of Ln_2O_2 core.

Complex 1							
Donor-H···Acceptor	D–H	Н…А	D····A	D –H···A			
O3…H3…O7A	0.85(6)	2.23(5)	3.048(6)	161(6)			
O3…H3…O7B	0.85(6)	2.28(6)	2.959(7)	137(5)			
O6…H6…O8A	0.86(4)	2.05(3)	2.874(9)	163(4)			
Complex 2							
Donor-H···Acceptor	D–H	Н…А	D····A	D –H···A			
O3…H3…O7A	0.86(8)	2.27(8)	3.058(14)	153(8)			
O3…H3…O7B	0.86(8)	2.18(8)	2.921(15)	144(8)			
O6…H6…O8A	0.86(5)	2.10(5)	2.912(16)	158(5)			
		Complex 3					
Donor-H…Acceptor	D–H	Н…А	D····A	D –H···A			
O3…H3…O7A	0.85(7)	2.27(6)	3.088(7)	164(7)			
O3…H3…O7B	0.85(7)	2.28(8)	2.926(8)	134(7)			
O6…H6…O8A	0.86(4)	2.07(4)	2.895(9)	160(4)			
Complex 4							
Donor-H···Acceptor	D–H	Н…А	D····A	D –H···A			
O3…H3…O7A	0.86(5)	2.36(5)	3.124(8)	147(5)			
O3…H3…O7B	0.86(5)	2.16(5)	2.930(9)	148(6)			
O6…H6…O8A	0.87(4)	2.04(3)	2.887(11)	165(5)			

 Table S5 Hydrogen bonding parameter found in 1–4, (distances, Å, angles, (°)).

	H…π Distances (Å)					
С–Н…π	Complex 1	Complex 2	Complex 3	Complex 4		
С10-Н10В…Х	2.71	2.72	2.71	2.71		
С23–Н23А…Ү	2.87	2.86	2.86	2.87		
С28–Н28А…Ү	2.82	2.76	2.80	2.80		
X = C1 - C6 inclusive, $Y = Ni4 - N4$ inclusive						

Table S6 C–H··· π interaction parameter found in 1–4, (distances, Å).