Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

General Considerations

Unless specified, all reactions were carried out in oven-dried glassware with magnetic stirring. All reagents and starting materials were purchased from commercial sources and used as received. Solvents were purified following standard literature procedures. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using silica gel and a gradient solvent system (Ethyl acetate: Petrol ether as eluant). ¹H and ¹³C NMR spectra were measured on 400 and 600 MHz spectrometers. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), bs (broad singlet), d (doublet), t (triplet), dd (doublet of doublets) or m (multiplet). The number of protons (n) for a given resonance is indicated by nH and coupling constants are reported as a J value in Hz. Infrared spectra were recorded on a FTIR spectrometer. High resolution mass spectra (HRMS) were obtained on a LTQ Orbitrap LC/HRMS mass spectrometer. All the starting materials 1 (2-alkynyl arylazides) were prepared by our reported methods.¹ Analytical reagents with a reaction solvent ethanol mass fraction greater than 99.7%.

General experimental procedure for the synthesis of 3-thiocyanato-1*H*-indoles 3

2-Alkynyl arylazides 1 (0.1 mmol, 1 equiv), $PdCl_2$ (5 mol%), KSCN (0.2 mmol, 2 equiv) and NBS (0.15 mmol, 1.5 equiv) were added to a 10 mL round bottom flask with magnetic stir bar in 1 mL mixed solvents of EtOH and H₂O (volume ratio 2:1). The reaction mixture was stirred at 90°C. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction residue was directly subjected to purification by flash column chromatography on silica gel to give the desired products 3-thiocyanato-1*H*-indoles **3**. (eluent: petrol ether: ethyl acetate = 8:1)

2-Phenyl-3-thiocyanato-1*H*-indole (3a)

Known compound²; isolated yield = 97%; yellow solid; m.p. 169.0-171.0 °C; ¹H NMR (DMSO- d_6 , 600 MHz): δ = 12.40 (s, 1 H), 7.85-7.87 (m, 2 H), 7.72 (d, J = 7.4 Hz, 1 H), 7.61-7.64 (m, 2 H), 7.53-7.55 (m, 2 H), 7.27-7.33 (m, 2 H); ¹³C NMR (CDCl₃, 150 MHz): δ = 143.2, 135.8, 130.0, 129.3, 129.2, 128.9, 128.8, 123.4, 121.4, 118.0, 112.5, 112.3, 87.1.

5-Methyl-2-phenyl-3-thiocyanato-1*H*-indole (3b)

Isolated yield = 95%; yellow solid; m.p. 142.1-143.4 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.67$ (s, 1 H), 7.72 (d, J = 7.0 Hz, 2 H), 7.62 (s, 1 H), 7.46-7.55 (m, 3 H), 7.32 (d, J = 8.3 Hz, 1 H), 7.14 (d, J = 8.2 Hz, 1 H), 2.53 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 143.2$, 133.8, 131.9, 130.3, 130.1, 129.6, 129.2, 128.7, 125.8, 118.7, 112.2, 111.4, 88.6, 21.7; HRMS (ESI) calcd for C₁₆H₁₃N₂S [M+H]⁺265.0799, found 265.0805.

6-Methyl-2-phenyl-3-thiocyanato-1*H*-indole (3c)

Isolated yield = 83%; yellow solid; m.p. 144.0-145.6 °C; ¹H NMR (CDCl₃, 400 MHz): δ = 8.64 (s, 1 H), 7.71 (d, *J* = 7.8 Hz, 3 H), 7.46-7.54 (m, 3 H), 7.22 (s, 1 H), 7.15 (d, *J* = 8.1 Hz, 1 H), 2.49 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz): δ = 142.5, 136.0, 134.3, 130.3, 129.5, 129.2, 128.6, 127.7, 124.0, 118.8, 112.1, 111.6, 89.0, 21.9; HRMS (ESI) calcd for C₁₆H₁₃N₂S [M+H]⁺ 265.0799, found 265.0803.

5-Fluoro-2-phenyl-3-thiocyanato-1*H*-indole (3d)

Isolated yield = 98%; yellow solid; m.p. 161.6-162.9 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.87$ (s, 1 H), 7.70 (d, J = 7.0 Hz, 2 H), 7.50-7.55 (m, 3 H), 7.46 (d, J = 9.9 Hz, 1 H), 7.33-7.36 (m, 1 H), 7.02-7.07 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.2$ (d, J = 237.6 Hz), 145.0, 131.9, 130.7 (d, J = 10.5 Hz), 129.9, 129.8, 129.3, 128.7, 112.9 (d, J = 2.9 Hz), 112.7 (d, J = 18.8 Hz), 111.9, 104.4 (d, J = 24.7 Hz), 89.22; HRMS (ESI) calcd for C₁₅H₁₀FN₂S [M+H]⁺269.0549, found 269.0553.

6-Fluoro-2-phenyl-3-thiocyanato-1*H*-indole (3e)

Isolated yield = 87%; yellow solid; m.p. 150.7-152.9 °C; ¹H NMR (CDCl₃, 400 MHz): δ = 8.83 (s, 1 H), 7.73-7.76 (m, 1 H), 7.69 (d, *J* = 7.1 Hz, 2 H), 7.47-7.55 (m, 3 H), 7.06-7.12 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ = 160.8 (d, *J* = 239.7 Hz), 143.7 (d, *J* = 3.0 Hz), 135.5 (d, *J* = 12.5 Hz), 129.9, 129.8, 129.3, 128.6, 126.2, 120.2 (d, *J* = 10.1 Hz), 111.9, 111.2 (d, *J* = 24.7 Hz), 98.4 (d, *J* = 26.6 Hz), 89.4; HRMS (ESI) calcd for C₁₅H₁₀FN₂S [M+H]⁺ 269.0549, found 269.0555.

2-Phenyl-3-thiocyanato-5-(trifluoromethyl)-1H-indole (3f)

Isolated yield = 87%; yellow solid; m.p. 154.0-155.6 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 9.09$ (s, 1 H), 8.11 (s, 1 H), 7.72 (d, J = 6.5 Hz, 2 H), 7.49-7.57 (m, 5 H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 145.2$, 137.0, 130.2, 129.4, 128.7, 127.6(d, J = 270.4Hz), 125.0, 124.8(d, J = 31.8 Hz), 121.0 (d, J = 3.0 Hz), 116.9 (d, J = 8.8 Hz), 112.3, 111.6, 90.4; HRMS (ESI) calcd for C₁₆H₁₀F₃N₂S [M+H]⁺ 319.0517, found 319.0520. 2-Phenyl-3-thiocyanato-6-(trifluoromethyl)-1H-indole (3g)

Isolated yield = 92%; yellow solid; m.p. 161.3-162.9 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 12.85 (s, 1 H), 7.87-7.92 (m, 3 H), 7.83 (s, 1 H), 7.63-7.66 (m, 2 H), 7.56-7.60 (m, 2 H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 146.1, 134.8, 131.8, 129.9, 129.1, 129.0, 126.3, 123.8 (q, *J* = 31.8 Hz), 119.1, 117.8(q, *J* = 3.3 Hz), 112.1, 109.8(q, *J* = 4.3 Hz), 88.5; HRMS (ESI) calcd for C₁₆H₁₀F₃N₂S [M+H]⁺ 319.0517, found 319.0523.

5-Chloro-2-phenyl-3-thiocyanato-1*H*-indole (3h)

Isolated yield = 91%; yellow solid; m.p. 168.2-170.5 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 12.60 (s, 1 H), 7.85 (d, J = 7.5 Hz, 2 H), 7.71 (s, 1 H), 7.61-7.65 (m, 2 H), 7.54-7.58 (m, 2 H), 7.32 (d, J = 8.6 Hz, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 144.7, 134.4, 130.4, 129.7, 129.6, 129.0, 128.9, 126.1, 123.5, 117.2, 114.2, 112.2, 87.3; HRMS (ESI) calcd for C₁₅H₁₀ClN₂S [M+H]⁺ 285.0253, found 285.0248.

6-Chloro-2-phenyl-3-thiocyanato-1*H*-indole (3i)

Isolated yield = 87%; yellow solid; m.p. 119.1-121.1 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 12.55 (s, 1 H), 7.84 (d, J = 7.6 Hz, 2 H), 7.72 (d, J = 8.1 Hz, 1 H), 7.61-7.65 (m, 2 H), 7.54-7.57 (m, 2 H), 7.29-7.32 (m, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 144.1, 136.2, 129.6, 129.0, 128.8, 128.0, 127.9, 121.8, 119.6, 112.2, 112.0,

87.9; HRMS (ESI) calcd for $C_{15}H_{10}CIN_2S$ [M+H]⁺ 285.0253, found 285.0250.

5,7-Dimethyl-2-phenyl-3-thiocyanato-1*H*-indole (3j)

Isolated yield = 78%; yellow solid; m.p. 122.1-123.3 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.52$ (s, 1 H), 7.73 (d, J = 7.2 Hz, 2 H), 7.47-7.56 (m, 4 H), 6.97 (s, 1 H), 2.50 (s, 6 H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 143.0$, 133.4, 132.1, 130.5, 129.8, 129.6, 129.2, 128.8, 126.6, 120.7, 116.4, 112.2, 89.2, 21.7, 16.5; HRMS (ESI) calcd for C₁₇H₁₅N₂S [M+H]⁺ 279.0956, found 279.0960.

2-Thiocyanato-2-(p-tolyl)-1*H*-indole (3k)

Known compound²; isolated yield = 88%; yellow solid; m.p. 151.7-155.7 °C; ¹H NMR (CDCl₃, 400 MHz): δ = 8.74 (s, 1 H), 7.82-7.84 (m, 1 H), 7.62 (d, *J* = 7.9 Hz, 2 H), 7.41-7.43 (m, 1 H), 7.31-7.35 (m, 4 H), 2.45 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz): δ = 143.4, 139.8, 135.4, 129.8, 129.8, 128.5, 127.1, 123.9, 122.0, 119.0, 112.0, 111.6, 88.6.

2-(4-Ethylphenyl)-3-thiocyanato-1H-indole (31)

Isolated yield = 87%; yellow solid; m.p. 127.3-129.4 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 12.32 (s, 1 H), 7.77 (d, J = 7.9 Hz, 2 H), 7.70 (d, J = 7.1 Hz, 1 H), 7.53 (d, J = 8.0 Hz, 1 H), 7.45 (d, J = 7.7 Hz, 2 H), 7.25-7.32 (m, 2 H), 2.71 (q, J = 7.6 Hz, 2 H), 1.25 (t, J = 7.6 Hz, 3 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 145.3, 143.3,

135.8, 129.5, 129.2, 128.8, 128.3, 127.4, 123.3, 121.4, 117.9, 112.4, 86.6, 28.0,
15.4; HRMS (ESI) calcd for C₁₇H₁₅N₂S [M+H]⁺279.0956, found 279.0962.

2-(4-Chlorophenyl)-3-thiocyanato-1*H*-indole (3m)

Known compound²; isolated yield = 83%; yellow solid; m.p. 122.5-123.9 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 12.45 (s, 1 H), 7.88 (d, J = 8.3 Hz, 2 H), 7.69-7.72 (m, 3 H), 7.55 (d, J = 7.6 Hz, 1 H), 7.27-7.34 (m, 2 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 141.7, 135.9, 134.2, 130.5, 129.1, 129.0, 128.8, 123.6, 121.5, 118.1, 112.5, 112.2, 87.8.

2-(3-Fluorophenyl)-3-thiocyanato-1*H*-indole (3n)

Isolated yield = 81%; yellow solid; m.p. 123.5-125.0 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 12.47 (s, 1 H), 7.65-7.74 (m, 4 H), 7.56 (d, *J* = 7.6 Hz, 1 H), 7.37-7.42 (m, 1 H), 7.28-7.36 (m, 2 H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 162.6 (d, *J* = 242.7 Hz), 141.9 (d, *J* = 2.4 Hz), 136.3, 132.6 (d, *J* = 8.5 Hz), 131.5 (d, *J* = 8.5 Hz), 129.5, 125.4 (d, *J* = 2.6 Hz), 124.2, 122.0, 118.7, 116.6 (d, *J* = 20.8 Hz), 116.0 (d, *J* = 23.0 Hz), 113.0, 112.7, 86.6; HRMS (ESI) calcd for C₁₅H₁₀FN₂S [M+H]⁺ 269.0549, found 269.0553.

2-(4-Pentylphenyl)-3-thiocyanato-1*H*-indole (30)

Isolated yield = 73%; yellow liquid; ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 12.32 (s, 1 H), 7.76 (d, *J* = 7.8 Hz, 2 H), 7.70 (d, *J* = 7.4 Hz, 1 H), 7.52 (d, *J* = 7.1 Hz, 1 H), 7.43 (d, *J* = 7.8 Hz, 2 H), 7.25-7.32 (m, 2 H), 2.67 (t, *J* = 7.5 Hz, 2 H), 1.60-1.67 (m, 2 H), 1.32-1.33 (m, 4 H), 0.88 (t, *J* = 5.7 Hz, 3 H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 143.9, 143.3, 135.8, 129.2, 128.8, 128.7, 127.4, 123.3, 121.4, 117.9, 112.4, 86.6, 34.9, 31.0, 30.5, 22.0, 13.9; HRMS (ESI) calcd for C₂₀H₂₁N₂S [M+H]⁺ 321.1425, found 321.1430.

2-(*Tert*-butyl)-3-thiocyanato-1*H*-indole (3p)

Isolated yield = 99%; yellow solid; m.p. 105.3-107.5 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 11.56$ (s, 1 H), 7.58-7.60 (m, 1 H), 7.48-7.50 (m, 1 H), 7.18-7.23 (m, 2 H), 1.55 (s, 9 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 152.8$, 134.4, 129.6, 122.3, 121.0, 117.0, 112.5, 112.2, 84.5, 33.5, 29.9; HRMS (ESI) calcd for C₁₃H₁₅N₂S [M+H]⁺ 231.0956, found 231.0961.

2-Cyclopropyl-3-thiocyanato-1*H*-indole (3q)

Isolated yield = 97%; yellow solid; m.p. 104.8-106.7 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 11.50 (s, 1 H), 7.53-7.54 (m, 1 H), 7.37-7.39 (m, 1 H), 7.16-7.19 (m, 2 H), 2.33-2.40 (m, 1 H), 1.16-1.21 (m, 2 H), 1.05-1.06 (m, 2 H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 148.4, 135.2, 128.6, 122.2, 120.9, 116.8, 112.2, 111.8, 86.6, 8.6, 8.1; HRMS (ESI) calcd for C₁₂H₁₁N₂S [M+H]⁺215.0643, found 215.0638.

2-Pentyl-3-thiocyanato-1*H*-indole (3r)

Isolated yield = 89%; yellow solid; m.p. 107.3-109.3 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 11.93 (s, 1 H), 7.56-7.58 (m, 1 H), 7.42-7.44 (m, 1 H), 7.18-7.22 (m, 2 H), 2.91 (t, J = 7.4 Hz, 2 H), 7.70-1.77 (m, 2 H), 1.31-1.34 (m, 2 H), 0.87 (t, J = 6.4 Hz, 3 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 147.2, 135.5, 128.3, 122.3, 120.8, 117.2, 112.2, 112.0, 86.4, 30.7, 28.4, 25.7, 21.8, 13.8; HRMS (ESI) calcd for C₁₅H₁₇N₂S [M+H]⁺257.1112, found 257.1108.

3-Thiocyanato-2-(thiophen-2-yl)-1*H*-indole (3s)

Isolated yield = 86%; yellow solid; m.p. 162.5-165.0 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 12.33 (s, 1 H), 8.21 (s, 1 H), 7.81-7.82 (m, 2 H), 7.68 (d, *J* = 7.5 Hz, 1 H), 7.52 (d, *J* = 7.7 Hz, 1 H), 7.24-7.31 (m, 2 H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 138.5, 135.6, 130.7, 129.2, 127.6, 126.9, 125.8, 123.4, 121.4, 117.9, 112.3, 112.1, 86.4; HRMS (ESI) calcd for C₁₃H₉N₂S₂ [M+H]⁺266.0911, found 266.0915.

2-(4-Chlorophenyl)-5-fluoro-3-thiocyanato-1*H*-indole (3t)

Isolated yield = 84%; yellow solid; m.p. 147.1-149.1 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 12.58 (s, 1 H), 7.87 (d, J = 7.8 Hz, 1 H), 7.70 (d, J = 7.4 Hz, 1 H), 7.54-7.57 (m, 1 H), 7.45 (d, J = 9.0 Hz, 1 H), 7.15-7.19 (m, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 158.3 (d, J = 234.9 Hz), 143.5, 134.4, 132.4, 130.5, 129.9 (d, J = 10.5 Hz), 129.1, 128.6, 114.4 (d, J = 9.5 Hz), 112.1 (d, J = 7.3 Hz), 111.9, 103.1 (d, J = 24.5 Hz), 88.1; HRMS (ESI) calcd for C₁₅H₉ClFN₂S [M+H]⁺ 303.0159, found

303.0162.

5-Fluoro-3-thiocyanato-2-(p-tolyl)-1*H*-indole (3u)

Isolated yield = 82%; yellow solid; m.p. 143.0-144.7 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 12.45 (s, 1 H), 7.75 (d, *J* = 7.8 Hz, 2 H), 7.51-7.54 (m, 1 H), 7.42 (d, *J* = 7.7 Hz, 3 H), 7.12-7.16 (m, 1 H), 2.41 (s, 3 H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 158.2 (d, *J* = 233.8 Hz), 145.1, 139.4, 132.3, 130.0 (d, *J* = 10.2 Hz), 129.5, 128.6, 126.9, 113.9 (d, *J* = 9.8 Hz), 112.2, 111.6 (d, *J* = 25.9 Hz), 102.9 (d, *J* = 24.5 Hz), 87.0, 21.0; HRMS (ESI) calcd for C₁₆H₁₂FN₂S [M+H]⁺283.0705, found 283.0712.

6-Chloro-2-(4-ethylphenyl)-3-thiocyanato-1*H*-indole (3v)

Isolated yield = 75%; yellow solid; m.p. 161.3-163.6 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): $\delta = 12.48$ (s, 1 H), 7.77 (d, J = 8.0 Hz, 2 H), 7.70 (d, J = 8.4 Hz, 1 H), 7.54 (s, 1 H), 7.46 (d, J = 7.9 Hz, 2 H), 7.26-7.34 (m, 1 H), 2.71 (q, J = 7.6 Hz, 2 H), 1.25 (t, J = 7.5 Hz, 3 H); ¹³C NMR (DMSO-*d*₆, 100 MHz): $\delta = 145.6$, 144.3, 136.2, 128.7, 128.4, 128.0, 127.8, 127.0, 121.8, 119.4, 112.2, 111.9, 87.4, 28.0, 15.4; HRMS (ESI) calcd for C₁₇H₁₄ClN₂S [M+H]⁺ 313.0566, found 313.0570.

5-Chloro-2-(3-fluorophenyl)-3-thiocyanato-1*H*-indole (3w)

Isolated yield = 97%; yellow solid; m.p. 110.1-113.8 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 12.61$ (s, 1 H), 7.66-7.72 (m, 4 H), 7.57 (s, 1 H), 7.39 (s, 1 H), 7.29 (d, J =

8.3 Hz, 2 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 162.2$ (d, J = 242.6 Hz), 142.4 (d, J = 2.4 Hz), 136.2, 131.8 (d, J = 8.3 Hz), 131.2 (d, J = 8.4 Hz), 128.4, 128.0, 125.0, 122.1, 119.7, 119.4 (d, J = 20.6 Hz), 115.6 (d, J = 23,1 Hz), 112.2, 112.1, 88.1; HRMS (ESI) calcd for C₁₅H₉ClFN₂S [M+H]⁺ 303.0159, found 303.0163.

2-((Benzyloxy)methyl)-3-thiocyanato-1*H*-indole (3x)

Isolated yield = 71%; yellow liquid; ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 12.25 (s, 1 H), 7.65 (d, *J* = 7.4 Hz, 1 H), 7.51 (d, *J* = 7.7 Hz, 1 H), 7.35-7.40 (m, 4 H), 7.22-7.32 (m, 3 H), 4.83 (s, 2 H), 4.60 (s, 2 H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 141.7, 137.8, 135.8, 128.4, 127.8, 127.8, 127.7, 123.3, 121.2, 117.8, 112.6, 112.0, 88.8, 71.8, 62.4.; HRMS (ESI) calcd for C₁₇H₁₅N₂OS [M+H]⁺ 295.0905, found 295.0911.

(3-Thiocyanato-1*H*-indol-2-yl)methanol (3y)

Isolated yield = 68%; yellow solid; m.p. 121.5-124.2 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 12.05 (s, 1 H), 7.61 (d, J = 7.6 Hz, 1 H), 7.48 (d, J = 7.0 Hz, 1 H), 7.19-7.25 (m, 2 H), 5.63 (t, J = 5.4 Hz, 1 H), 4.79 (d, J = 5.3 Hz, 2 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 145.7, 135.6, 128.1, 122.7, 121.0, 117.5, 112.5, 112.0, 85.9, 54.8; HRMS (ESI) calcd for C₁₀H₉N₂OS [M+H]⁺ 214.1140, found 214.1138.

3-Bromo-2-phenyl-1*H*-indole (E)

Known compound³; Isolated yield = 51%; yellow solid; ¹H NMR (CDCl₃, 400 MHz):

δ = 8.32 (s, 1 H), 7.85 (d, *J* = 4.9 Hz, 2 H), 7.66 (d, *J* = 5.2 Hz, 1 H), 7.53 (m, 2 H), 7.44 (m, 1 H), 7.41 (d, *J* = 5.3 Hz, 1 H), 7.28 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ = 135.4, 134.4, 131.5, 129.0, 128.9, 128.5, 127.9, 123.6, 121.1, 119.7, 111.2, 90.2.

2-(4-Bromophenyl)-3-thiocyanato-1*H*-indole (3z)

Isolated yield = 71%; yellow solid; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 12.46 (s, 1 H), 7.80-7.85 (m, 4 H), 7.72 (d, J = 7.6 Hz, 1 H), 7.56 (d, J = 8.0 Hz, 1 H), 7.27-7.34 (m, 2 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 141.7, 135.9, 131.9, 130.7, 129.1, 129.1, 123.6, 122.9, 121.5, 118.1, 112.5, 112.1, 87.7; HRMS (ESI) calcd for C₁₅H₁₀Br N₂S [M+H]⁺ 328.9748, found 328.9743.

Figure 1. ¹H and ¹³C NMR Spectra of 2-Phenyl-3-thiocyanato-1*H*-indole (3a)

Figure 2. ¹H and ¹³C NMR Spectra of

5-Methyl-2-phenyl-3-thiocyanato-1*H*-indole (3b)

Figure 3. ¹H and ¹³C NMR Spectra of **6-Methyl-2-phenyl-3-thiocyanato-1***H***-indole (3c)**

Figure 4. ¹H and ¹³C NMR Spectra of **6-Fluoro-2-phenyl-3-thiocyanato-1***H***-indole (3d)**

Figure 5. ¹H and ¹³C NMR Spectra of

6-Fluoro-2-phenyl-3-thiocyanato-1*H*-indole (3e)

Figure 6. ¹H and ¹³C NMR Spectra of 2-Phenyl-3-thiocyanato-5-(trifluoromethyl)-1*H*-indole (3f)

Figure 7. ¹H and ¹³C NMR Spectra of **2-Phenyl-3-thiocyanato-6-(trifluoromethyl)-1***H***-indole (3g)**

Figure 8. ¹H and ¹³C NMR Spectra of 5-Chloro-2-phenyl-3-thiocyanato-1*H*-indole (3h)

Figure 10. ¹H and ¹³C NMR Spectra of **5,7-Dimethyl-2-phenyl-3-thiocyanato-1***H***-indole (3j)**

Figure 11. ¹H and ¹³C NMR Spectra of **3-Thiocyanato-2-(p-tolyl)-1***H***-indole (3k)**

Figure 12. ¹H and ¹³C NMR Spectra of 2-(4-Ethylphenyl)-3-thiocyanato-1H-indole (31)

Figure 13. ¹H and ¹³C NMR Spectra of **2-(4-Chlorophenyl)-3-thiocyanato-1***H***-indole (3m)**

Figure 14. ¹H and ¹³C NMR Spectra of **2-(3-Fluorophenyl)-3-thiocyanato-1***H***indole (3n)**

Figure 15. ¹H and ¹³C NMR Spectra of 2-(4-Pentylphenyl)-3-thiocyanato-1*H*-indole (30)

Figure 16. ¹H and ¹³C NMR Spectra of 2-(Tert-butyl)-3-thiocyanato-1*H*-indole (3p)

Figure 18. ¹H and ¹³C NMR Spectra of 2-Pentyl-3-thiocyanato-1*H*-indole (3r)

Figure 20. ¹H and ¹³C NMR Spectra of **2-(4-Chlorophenyl)-5-fluoro-3-thiocyanato-1***H***-indole (3t)**

Figure 21. ¹H and ¹³C NMR Spectra of 5-Fluoro-3-thiocyanato-2-(p-tolyl)-1*H*-indole (3u)

Figure 22. ¹H and ¹³C NMR Spectra of 6-Chloro-2-(4-ethylphenyl)-3-thiocyanato-1*H*-indole (3v)

Figure 23. ¹H and ¹³C NMR Spectra of **5-Chloro-2-(3-fluorophenyl)-3-thiocyanato-1***H***-indole (3w)**

Figure 24. ¹H and ¹³C NMR Spectra of **2-((Benzyloxy)methyl)-3-thiocyanato-1***H***-indole (3x)**

Figure 25. ¹H and ¹³C NMR Spectra of

Figure 26. ¹H and ¹³C NMR Spectra of **3-Bromo-2-phenyl-1***H*-indole

Figure 27. ¹H and ¹³C NMR Spectra of 2-(4-Bromophenyl)-3-thiocyanato-1*H*-indole (3z)

References:

- 1. (a) X. Zhang, X. Sun, H. Fan, C. Lyu, P. Li, H. Zhang and W. Rao, RSC Adv.,
- 2016, **6**, 56319; (b) X. Zhang, X. Sun, H. Fan, P. Li, C. Lyu and W. Rao, *Eur. J. Org. Chem.*, 2016, **25**, 4265.
- 2. M. P. Fortes, P. B. N. da Silva, T. G. da Silva, T. S. Kaufman, G. C. G. Militão and
- C. C. Silveira, Eur. J. Med. Chem., 2016, 118, 21.
- 3. S. Song, X. Sun, X. Li, Y. Yuan and N. Jiao, Org. Lett., 2015, 17, 2886.