Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry

Ce ions surface-modified TiO₂ aerogel powders: a comprehensive study of their excellent photocatalytic efficiency in organic pollutants removal

Guru Karthikeyan Thirunavukkarasu,^a Olivier Monfort,^{a,*} Martin Motola,^a Monika Motlochová,^b Maroš Gregor,^c Tomáš Roch,^c Maria Čaplovicová,^d Aleksandra Y. Lavrikova,^e Karol Hensel,^e Vlasta Brezová,^f Monika Jerigová,^{g,h} Ján Šubrt,^b Gustáv Plesch^a

Electronic Supplementary Information

^{a.} Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Mlynska Dolina, 842 15 Bratislava, Slovakia

^{b.} Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Rez c.p. 1001, 250 68 Rez, Czechia

^c Department of Experiment Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynska Dolina, 842 48 Bratislava, Slovakia

^{d.} STU Center for Nanodiagnostics, Slovak University of Technology in Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia ^{e.} Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynska

Dolina, 84248, Bratislava, Slovakia

^{f.} Institute of Physical Chemistry and Chemical Physics, Faculty of Chemistry and Food technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia

^{g.} International Laser Centre, Ilkovicova 3, 842 48 Bratislava, Slovakia

^{h.} Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Mlynska dolina, 842 15 Bratislava, Slovakia

^{*} Corresponding author: monfort1@uniba.sk (email), +421(0)290142141 (phone)

New Journal of Chemistry

ARTICLE

Calculation of percentage of anatase phase present in P25 sample:

The P25 samples consist of ~82% of anatase phase, which is calculated using the formula ¹:

$$W_{A} = \frac{1}{1 + 1.26 \left(\frac{I_{R}}{I_{A}}\right)}$$

where, I_R and I_A is the strongest intensity of the rutile (110) and anatase (101) diffraction peak, respectively.

New Journal of Chemistry

Table S1: Summary of Ce modified TiO_2 for photocatalytic application.

Material	Synthesis	Ce Dopant	Bandgap	Type of Pollutant	Degradation	Ref.
	Technique	Concentration	(eV)		%	
Ce ³⁺ –TiO ₂	Sol-gel	0.7% atomic	Not calculated.	2-mercaptobenzothiazole	100	2
catalysts		ratio (Ce/Ti)	But adsorption	Visible Light		
			increased in the	• 1.1 h		
			400-500 nm			
			region			
Ce-TiO ₂	Sol-gel	0.4wt%	Not calculated.	Phenol	100	3
		(Ce/TiO ₂)	But adsorption	UV light		
			increased in the	• 3 h		
			400-500 nm			
- 2			region			<u> </u>
Ce^{3+} doped TiO ₂	Precipitation	1.47wt% (EDX)	3.15	Orange II dye	~40	4
				• 400 nm		
				• 0.5 h		
Mesoporous	Sol-gel	5 mol%	Not calculated.	Methylene blue (MB)	100	5
Ce/TiO ₂			But adsorption	Visible light		
			increased in the	• 1h		
			400-500 nm			
			region			
Cerium-doped	Sol-gel	0.2% molar	Not calculated.	Methylene blue (MB)	~80	ь
SiO ₂ /TiO ₂	and	ratio (Ce/Ti)	But adsorption	Simulated sunlight		
nanofibers	electrospinning		increased in the	• 2 h		
			400-500 nm			
			region			7
Ce doped TIO ₂	Hydrothermal	0.5% molar	~3	Rhodamine B	~90	/
nanosneets		ratio		UV-Visible light		
				• 1h		
Ce- and S-co-	Sol-gel	0.04 g	2.66	Acid Orange 7 (AO-7)	100	8
doped IIO ₂		(Ce(NO ₃) ₃ .6H ₂ O		Visible Light		
				• 5 h		
Ce/N co-doped	Hydrothermal	0.05 g	1.8	Acid Orange 7 (AO-7)	100	9
TiO ₂		(Ce(NO ₃) ₃ .6H ₂ O		Visible Light		
				• 5 h		
Sn/Ce co-doped	Sol-gel	2 mol%	3.02	Methylene blue (MB)	~80	10
TiO ₂				Solar light		
				• 2 h		
Ce-TiO ₂ P25	Hydrothermal	0.29 mol%	3.25	Methylene blue (MB)	~96	11
		(Ce/TiO ₂)		Visible light		
				• 2.4 h		
Ti ³⁺ -TiO ₂ /Ce ³⁺ -	Hydrothermal	1.56 at % (XPS)	2.7	 Methyl orange (MO) and 	~99	12
CeO ₂ nanosheet				methylene blue (MB)		
				Visible light		
				• 3 h		
In _{0.2} -Ce _{0.2} /TiO ₂	Sol-gel	0.45 at%	2.84	Rhodamine B	~96	13
aerogels				Visible		
				• 1.5 h		
Ce doped TiO ₂	Sol-gel	0.5wt%	3.06	Caffeine	~30	14
				Visible light		
				• 2 h		
Ce-TiO ₂ P25	Hydrothermal	0.5wt% (Ce/Ti)	2.4	Methylene blue (MB)	~90	15
				Visible light		
				• 1.3 h		
Ce-doped	Sol-gel	0.1 mol%	3.31	Methylene blue (MB)	~90	16
anatase				UV light		
TiO ₂				• 24 h min		

Figure S1: Influence of cerium ions surface-modification content on TiAP upon the photocatalytic efficiency in Rhodamine B decolorization under UVA light.

Table S2: The tabulation of photocatalytic activity rate (*k*) and degradation % of Rhodamine B under UVA light with different concentration of cerium surface modification on TiAP.

Sample	Photocatalytic activity rate (k) min ⁻¹	Degradation %
TiAP	0.121	~71
0.025 wt% Ce/TiAP	0.141	~75
0.0125 wt% Ce/TiAP	0.198	~86
0.0025 wt% Ce/TiAP	0.289	~94
0.00125 wt% Ce/TiAP	0.107	~63

4 | New J. Chem., 2021, 00, 1-9

ARTICLE

Figure S3: SIMS based detection of Ce in Ce/TiAP (A: Pristine TiAP, B: 0.00125 wt% Ce/TiAP, C: 0.0025 wt% Ce/TiAP and D: 0.0125 wt% Ce/TiAP). Ce⁺ ion peak was identified at 139.9 mu (dash line).

Figure S4: (a) Photocurrent densities of P25, TiAP and Ce/TiAP with (b) the corresponding transient current measured at 0.4 $V_{Ag/AgCl}$ in an aqueous 0.1 M Na₂SO₄ solution in the spectral range from 300 nm to 500 nm.

Figure S5: The linearized pseudo-first-order plots of $ln(C/C_0)$ versus time (a) Rhodamine B, (b) Phenol mineralization measured by total organic carbon content analyzer, (c) & (d) Caffeine degradation by HPLC and mineralization measured by total organic carbon content analyzer.

Figure S6: Repeated runs (4 cycles) using Ce/TiAP under UVA irradiation for the photocatalytic degradation of (a) Rhodamine B (C/C₀), (b) Phenol (TOC), (c) Caffeine (TOC).

Figure S7: The normalized experimental (1) and simulated (2) EPR spectra obtained after 180 s exposure of aerated aqueous suspensions of TiAP in the presence of spin trapping agent: (a) DMPO; (b) BMPO. (LED@365 nm, irradiance 10 mW cm⁻²; TiO₂ loading 0.2 mg mL⁻¹; $c_0(DMPO) = 0.04 \text{ M}$; $c_0(BMPO) = 0.02 \text{ M}$).

Figure S8: Free radical quenching of TiAP and Ce/TiAP using the isopropyl alcohol (IPA), ammonium oxalate (AO), benzoquinone (BQ) as scavengers (a) Rhodamine B and (b) caffeine.

Figure S9: Degradation curves of (a) and (b) Rhodamine B and (c) and (d) Caffeine using TiAP and Ce/TiAP, respectively, under UVA irradiation.

References

- 1 R. A. Spurr and Howard. Myers, Anal. Chem., 1957, 29, 760–762.
- 2 F. B. Li, X. Z. Li, M. F. Hou, K. W. Cheah and W. C. H. Choy, Applied Catalysis A: General, 2005, 285, 181–189.
- 3 C. Fan, P. Xue and Y. Sun, *Journal of Rare Earths*, 2006, **24**, 309–313.
- 4 V. Štengl, S. Bakardjieva and N. Murafa, Materials Chemistry and Physics, 2009, 114, 217–226.
- 5 N. Aman, P. K. Satapathy, T. Mishra, M. Mahato and N. N. Das, Materials Research Bulletin, 2012, 47, 179–183.
- 6 Y. Liu, H. Yu, Z. Lv, S. Zhan, J. Yang, X. Peng, Y. Ren and X. Wu, Journal of Environmental Sciences, 2012, 24, 1867–1875.
- 7 Y. Liu, P. Fang, Y. Cheng, Y. Gao, F. Chen, Z. Liu and Y. Dai, Chemical Engineering Journal, 2013, 219, 478–485.
- 8 M. Nasir, Z. Xi, M. Xing, J. Zhang, F. Chen, B. Tian and S. Bagwasi, J. Phys. Chem. C, 2013, 117, 9520–9528.
- 9 M. Nasir, S. Bagwasi, Y. Jiao, F. Chen, B. Tian and J. Zhang, Chemical Engineering Journal, 2014, 236, 388–397.
- 10 M. Alijani and B. K. Kaleji, Opt Quant Electron, 2017, 49, 34.
- 11 G. B. Vieira, H. J. José, M. Peterson, V. Z. Baldissarelli, P. Alvarez and R. de Fátima Peralta Muniz Moreira, *Journal of Photochemistry and Photobiology A: Chemistry*, 2018, **353**, 325–336.
- 12 Z. Xiu, Z. Xing, Z. Li, X. Wu, X. Yan, M. Hu, Y. Cao, S. Yang and W. Zhou, Materials Research Bulletin, 2018, 100, 191–197.
- 13 R.-R. Zheng, T.-T. Li and H. Yu, *Global Challenges*, 2018, **2**, 1700118.
- 14 V. O. Ndabankulu, S. Maddila and S. B. Jonnalagadda, Can. J. Chem., 2019, 97, 672–681.
- 15 G. B. Vieira, G. Scaratti, F. S. Rodembusch, S. M. De Amorim, M. Peterson, G. L. Puma and R. D. F. P. M. Moreira, Environmental Technology, 2019, 1–15.
- 16 G. Bahmanrokh, C. Cazorla, S. S. Mofarah, R. Shahmiri, Y. Yao, I. Ismail, W.-F. Chen, P. Koshy and C. C. Sorrell, Nanoscale, 2020, 12, 4916–4934.