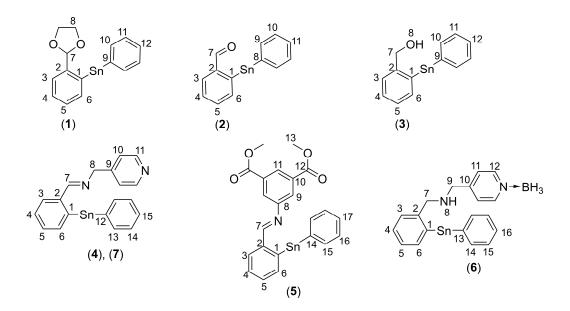
Electronic Supplementary Information

Reactivity of a carbonyl moiety in organotin(IV) compounds. Novel Pd(II) and Cu(II) complexes supported by organotin(IV) ligands

Adrian-Alexandru Someșan^a, Cristian Silvestru^a and Richard A. Varga^{a,*}


^aDepartment of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania. *Corresponding author

E-mail address: richard.varga@ubbcluj.ro

Content

Numbering schemes for NMR resonance assignments	S3
¹ H and ¹³ C NMR spectra of 1	S4
¹ H and ¹³ C NMR spectra of 2	S5
¹ H and ¹³ C NMR spectra of 3	S6
¹ H and ¹³ C NMR spectra of 4	S7
¹ H and ¹³ C NMR spectra of 5	S8
¹ H and ¹³ C NMR spectra of 6	S9
¹¹ B NMR spectra of 6	S10
¹ H and ¹³ C NMR spectra of 7	S11
¹¹⁹ Sn NMR stacked spectra of 1-7	S12
X-ray crystal data and structure refinement for compounds 1, 2, 4 and 5	S13
X-ray crystal data and structure refinement for compounds 6–8	S14
Molecular structures of the isomers of 1 and disordered structure of 3 showing the	
carbonyl fragment located on three occupancy sites	S15
Molecular structure of the isomers of 6	S16
Molecular structure of 7	S17
Packing of 4, showing the interconnected chains forming a layer	S18
Packing of 4, showing interconnected layers forming a 3D supramolecular	
architecture	S19
Offset $\pi \cdots \pi$ stacking and packing along <i>a</i> axis in the crystal of 5	S20
CH··· π interactions and 3D supramolecular architecture in the crystal of 6	S21
Intra- and intermolecular contacts observed in the crystal of 8	S22
Packing of 8 , showing the parallel chains	S23
3D supramolecular architecture in the crystal of 8	S24

Numbering schemes for NMR resonance assignments

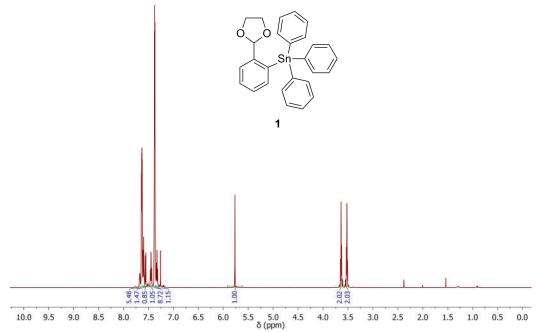
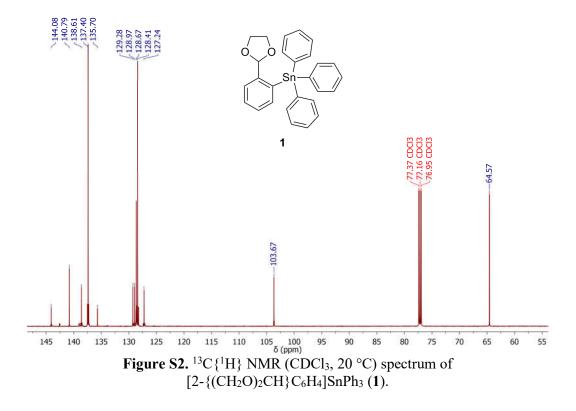
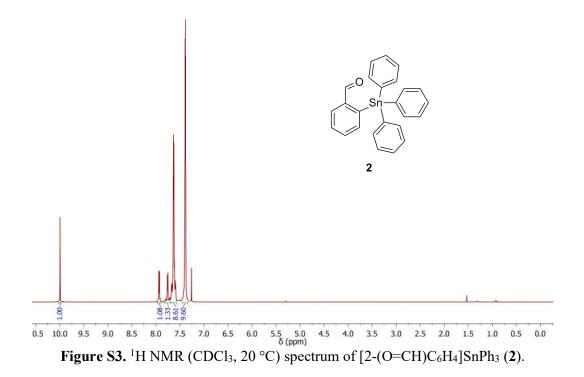
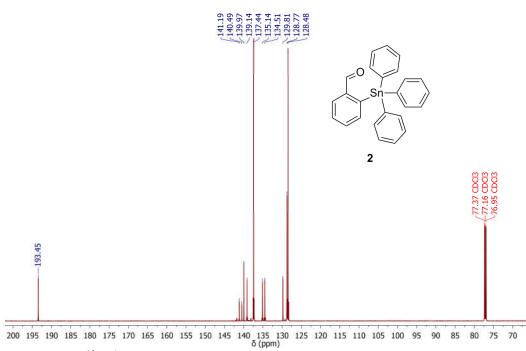
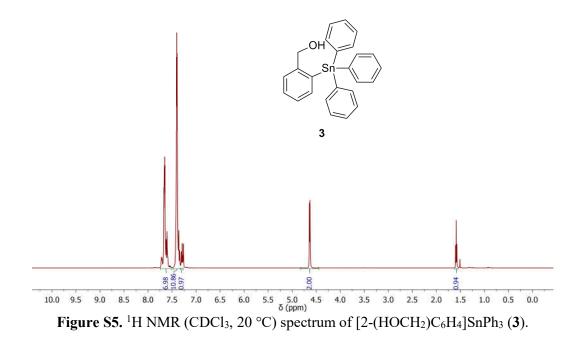
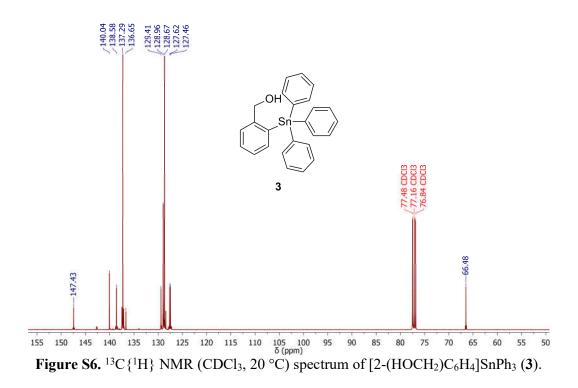
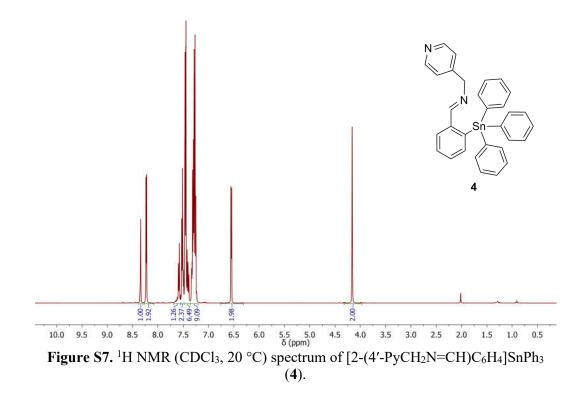
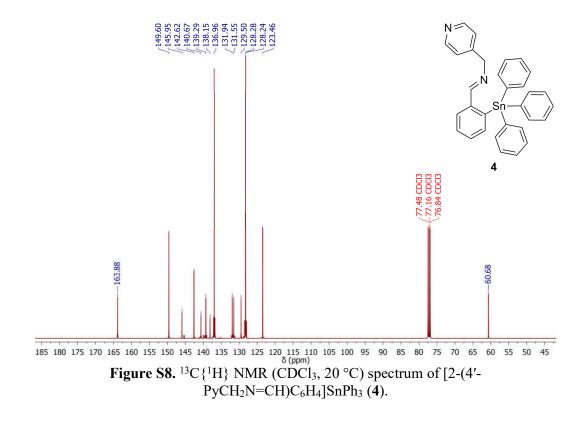
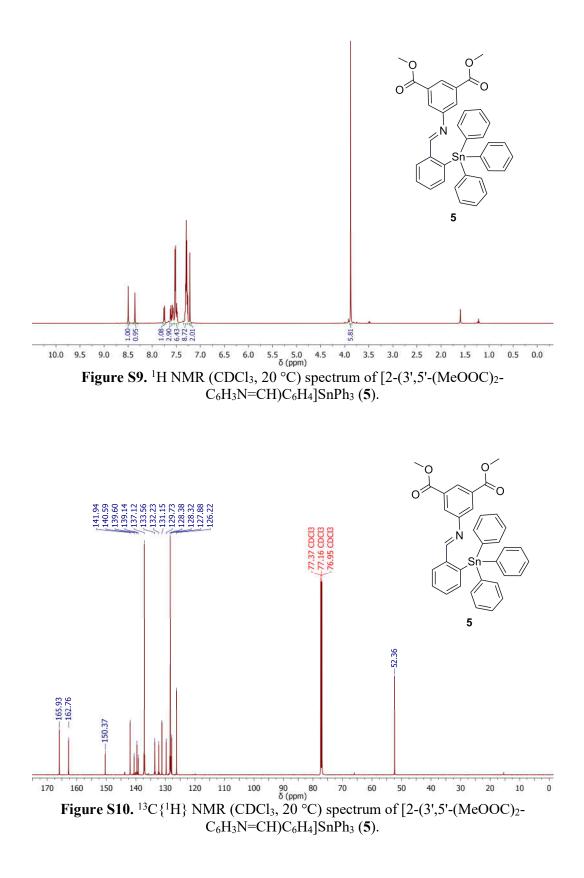
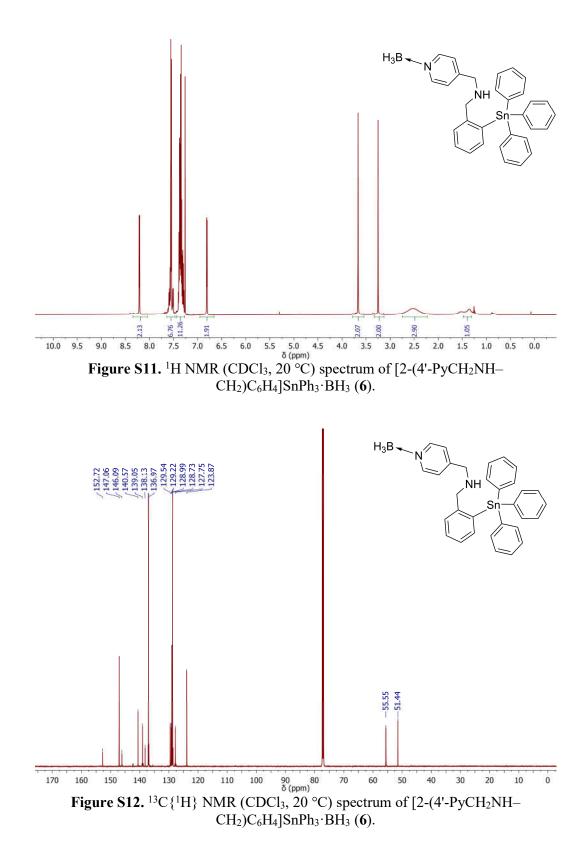
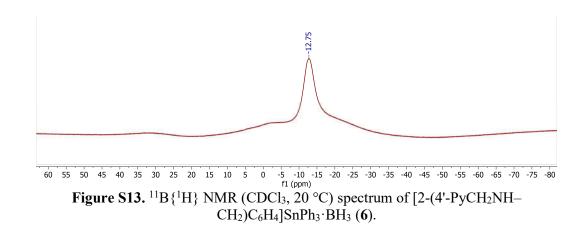




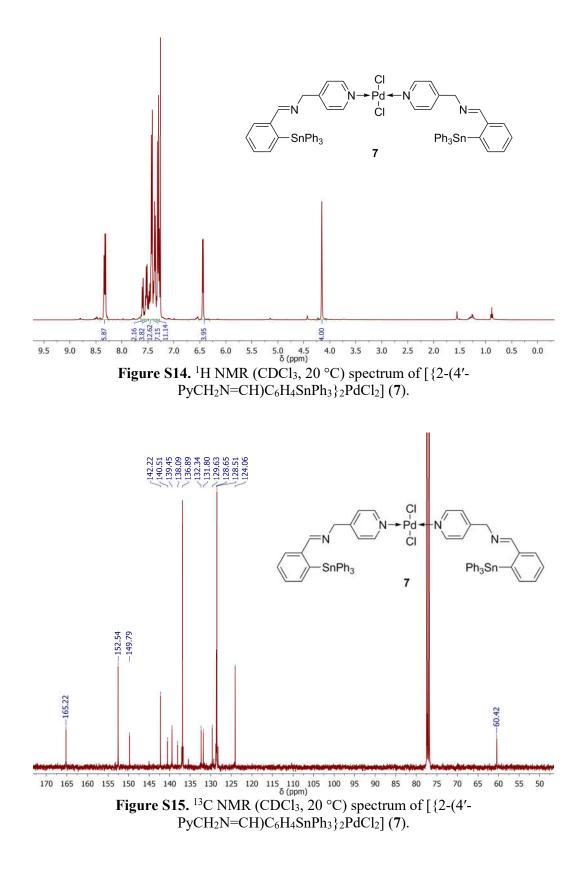
Figure S1. ¹H NMR (CDCl₃, 20 °C) spectrum of [2-{(CH₂O)₂CH}C₆H₄]SnPh₃ (1).

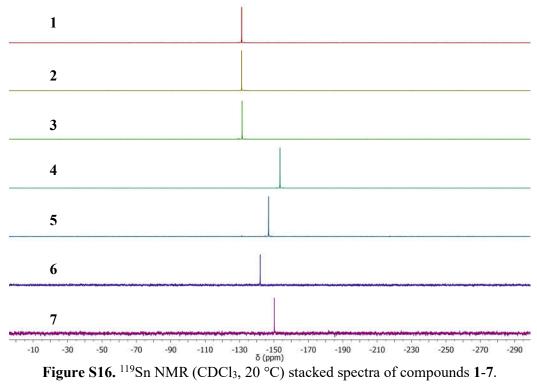






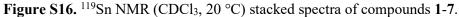

Figure S4. ${}^{13}C{}^{1}H$ NMR (CDCl₃, 20 °C) spectrum of [2-(O=CH)C₆H₄]SnPh₃ (2).











	1·C7H8	2	4	5
Empirical formula	$C_{61}H_{56}O_4Sn$	C25H20OSn	$C_{31}H_{26}N_2Sn$	C35H29NO4Sn
Formula weight	1090.43	455.10	545.23	646.28
Temperature (K)	150(2)	100(2)	297(2)	150(2)
Crystal system	Monoclinic	Orthorhombic	Triclinic	Triclinic
Space group	$P2_{1}/n$	$Pna2_1$	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	9.844(2)	16.9881(6)	9.898(16)	10.0636(1)
<i>b</i> (Å)	18.861(4)	15.2425(5)	11.551(2)	11.6223(2)
<i>c</i> (Å)	14.068(3)	7.7375(2)	12.613(3)	14.212(2)
α (°)	90	90	70.529(4)	96.462(2)
β (°)	108.167(4)	90	80.243(4)	97.444(2)
γ (°)	90	90	67.538(3)	113.734(2)
Volume (Å ³)	2481.8(10)	2003.56(11)	1255.0(5)	1483.8(4)
Ζ	2	4	2	2
D_{calc} (g cm ⁻³)	1.459	1.509	1.443	1.447
Absorption coefficient (mm ⁻¹)	1.055	1.286	1.039	0.900
F(000)	1108	912	552	656
Crystal size (mm)	0.29x0.25x0.22	0.08x0.08x0.11	0.29x0.28x0.26	0.23x0.26x0.33
θ range for data collection (°)	1.867 to 25.099	2.40 to 28.28	1.714 to 24.999	1.469 to 24.999
Reflections collected	24041	28944	11831	14095
Independent reflections	4423	4967	4367	5182
	$[R_{int} = 0.0481]$	$[R_{int} = 0.0333]$	$[R_{int} = 0.0361]$	$[R_{int} = 0.0255]$
Absorption correction	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹
Data / restraints / parameters	4423 / 123 / 335	4967 / 1 / 244	4367 / 0 / 307	5182 / 0 / 372
Goodness-of-fit on F^2	1.095	1.085	1.026	1.088
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0385$	$R_1 = 0.0327$	$R_1 = 0.0324$	$R_1 = 0.0252$
	$wR_2 = 0.0984$	$wR_2 = 0.0857$	$wR_2 = 0.0657$	$wR_2 = 0.0614$
R indices (all data)	$R_1 = 0.0457$	$R_1 = 0.0370$	$R_I = 0.0402$	$R_1 = 0.0271$
	$wR_2 = 0.1031$	$wR_2 = 0.0885$	$wR_2 = 0.0690$	$wR_2 = 0.0623$
Largest difference peak and hole (e $Å^{-3}$)	1.421 and -0.477	1.494 and -0.942	0.48 and -0.301	0.55 and -0.21
CCDC No.	2003707	2003708	2003705	2003706

Table S1. X-ray crystal data and structure refinement for compounds 1, 2, 4 and 5

G. M. Sheldrick, *SADABS, Program for area detector adsorption correction*, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.

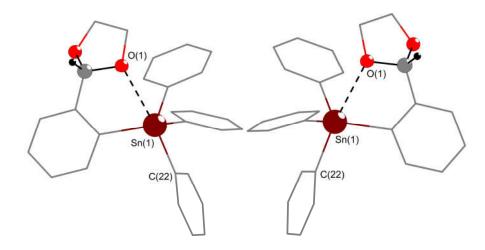
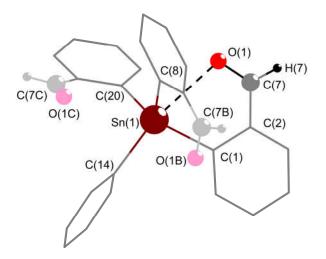
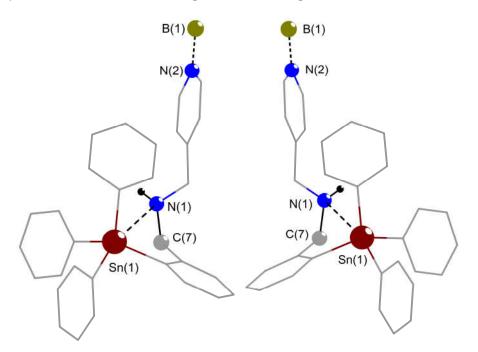

	6	7	8
Empirical formula	$C_{31}H_{31}BN_2Sn$	$C_{62}H_{52}Cl_2N_4PdSn_2$	$C_{72}H_{54}CuF_{12}N_4O_4Sn$
Formula weight	561.08	1267.75	1568.11
Temperature (K)	297(2)	100(2)	100(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	Cc	$P2_1/n$	C2/c
a (Å)	14.6278(17)	8.2544(7)	27.3118(9)
<i>b</i> (Å)	13.3165(15)	17.3898(14)	12.8432(5)
<i>c</i> (Å)	14.9311(17)	18.3621(16)	20.0980(7)
α (°)	90	90	90
β (°)	111.563(2)	95.750(3)	111.2470(1)
γ (°)	90	90	90
Volume (Å ³)	2704.9(5)	2622.5(4)	6570.6(4)
Ζ	4	2	4
$D_{\text{calc}} (\text{g cm}^{-3})$	1.378	1.605	1.585
Absorption coefficient (mm ⁻¹)	0.966	1.431	1.162
<i>F</i> (000)	1144	1264	3132
Crystal size (mm)	0.20x0.25x0.29	0.05x0.05x0.07	0.06x0.09x0.14
θ range for data collection (°)	2.140 to 25.099	2.23 to 29.48	2.18 to 28.30
Reflections collected	12809	75729	111572
Independent reflections	4780	7288	8170
	$[R_{int} = 0.0477]$	$[R_{int} = 0.0651]$	$[R_{int} = 0.0366]$
Absorption correction	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹
Data / restraints / parameters	4780 / 9 / 332	7288 / 2510 / 651	8170 / 360 / 487
Goodness-of-fit on F^2	1.036	1.006	1.030
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0389$	$R_1 = 0.0477$	$R_1 = 0.0298$
	$wR_2 = 0.0904$	$wR_2 = 0.1071$	$wR_2 = 0.0702$
R indices (all data)	$R_1 = 0.0416$	$R_1 = 0.0951$	$R_1 = 0.0346$
	$wR_2 = 0.0919$	$wR_2 = 0.1335$	$wR_2 = 0.0735$
Largest difference peak and hole (e $Å^{-3}$)	1.068 and -0.317	0.566 and -0.758	2.241 and -1.327
CCDC No.	2003704	2003709	2003710

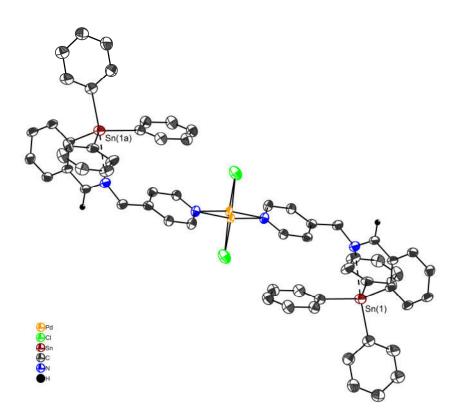
 Table S2. X-ray crystal data and structure refinement for compounds 6-8.


¹G. M. Sheldrick, *SADABS, Program for area detector adsorption correction*, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.

[2-{(CH₂O)₂CH}C₆H₄]SnPh₃ (1)

- the crystal contains a 1:1 mixture of $pS_{O(1)}$ - $S_{C(7)}$ -1 and $pR_{O(1)}$ - $R_{C(7)}$ -1


Figure S17. Molecular structure of $pS_{O(1)}$ - $S_{C(7)}$ -1 isomer (*left*) and $pR_{O(1)}$ - $R_{C(7)}$ -1 isomer (*right*) in the crystal of 1 (only methyne hydrogen is shown).


Figure S18. Molecular structure of **3** showing the carbonyl fragment located on three different phenyl rings with a site having preponderant occupancy [0.69 C(7)] over the others [0.18 C(7B)] and 0.13 C(7C) (only carbonyl hydrogen atoms are shown).

[2-(4-PyCH₂NH-CH₂)C₆H₄]SnPh₃·BH₃ (6)

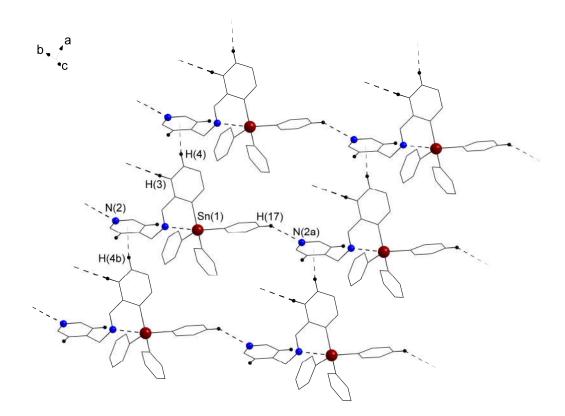

- the crystal contains a 1:1 mixture of $pS_{N(1)}$ - $S_{N(1)}$ -6 and $pR_{N(1)}$ - $R_{N(1)}$ -6

Figure S19. Molecular structure of $pS_{N(1)}$ - $S_{N(1)}$ -6 isomer (*left*) and $pR_{N(1)}$ - $R_{N(1)}$ -6 isomer (*right*) in the crystal of 6 (only amine hydrogen is shown).

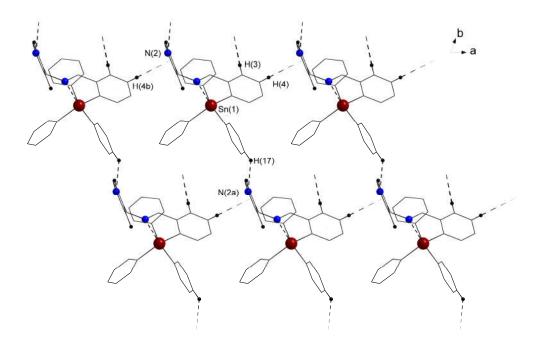


Figure S20. ORTEP representation at 30% probability of 7, displaying only the major occupancy site of the molecule (68%) (only imine hydrogen atoms are shown). Selected interatomic distances (Å) and bond angles (°): Sn(1)–C distances (Å): 2.192(10), 2.194(11), 2.157(7), 2.154(8), Sn(1)…N distance 2.737(12) (Å), axial angle N–Sn(1)– $C = 174.4(4)^{\circ}$.

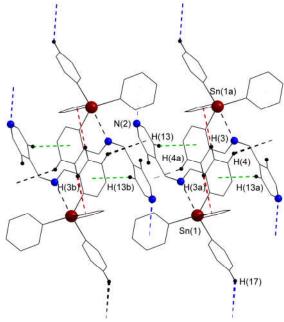


Figure S21. Packing of the molecules in the crystal of **4**, showing the interconnected chains forming a layer (only hydrogen atoms involved in intermolecular contacts are shown). [Symmetry equivalents atom (1+x, -1+y, 1+z), (-1+x, y, z) are given by "a", "b", respectively].

- intermolecular distance H(17)···N(2a) 2.66 Å $\sum r_{vdW}(N,H) 2.75$ Å C(4b)-H(4b)···Ph_{centroid} {Py} 2.89 Å $\gamma = 12.2^{\circ}l$

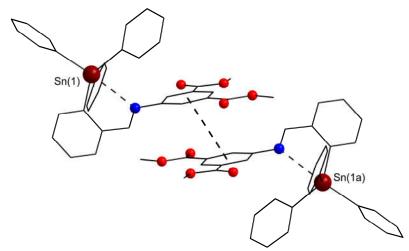
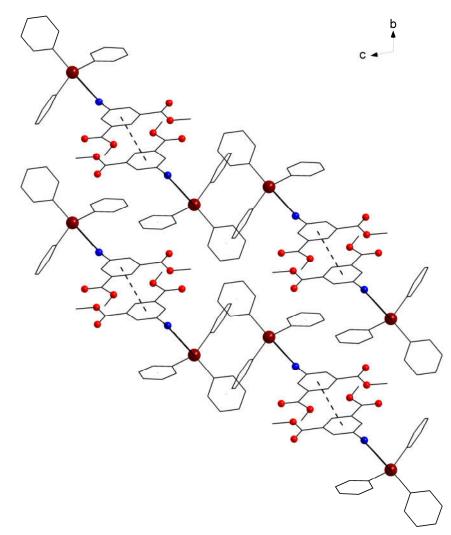
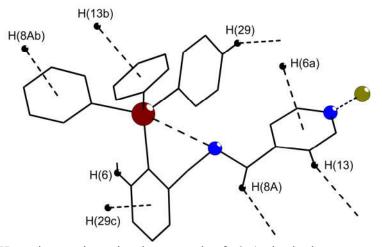


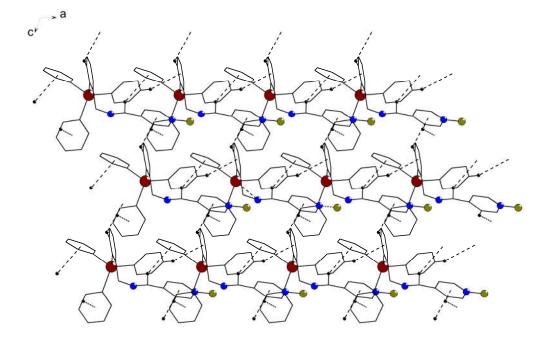
Figure S22. Viewing along c axis of the packing of molecules in the crystal of **4**, showing the interconnected chains forming a layer (only hydrogen atoms involved in intermolecular contacts are shown). [Symmetry equivalents atom (1+x, -1+y, 1+z), (-1+x, y, z) are given by "a", "b", respectively].

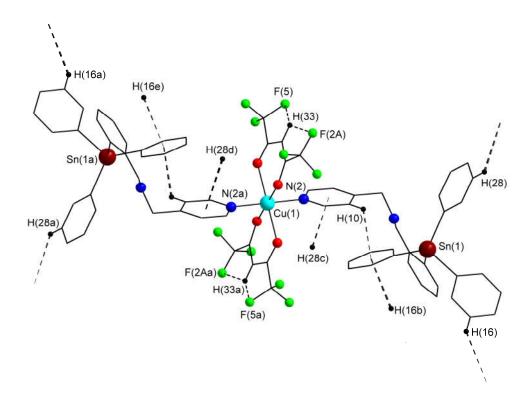
Figure S23. Packing of the molecules in the crystal **4**, showing the interconnected layers forming 3D supramolecular architecture (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (1-x, 1-y, -z), (-x, 1-y, -z) are given by "a" and "b" respectively].

$C(3)-H(3)\cdots Ph_{centroid} \{C(26)-C(31)\}$	2.85 Å	$\gamma = 6.4^{\circ}$
$C(13b)-H(13b)\cdots Ph_{centroid}{C(1)-C(6)}$	2.95 Å	γ = 18.2°

Figure S24. Offset $\pi \cdots \pi$ stacking in the crystal of **5** (hydrogen atoms are omitted for clarity) [symmetry equivalent (2–*x*, 1–*y*, 2–*z*) is corresponding to "a"].


Figure S25. View along a axis of the crystal packing of 5 (hydrogen atoms are omitted for clarity).


Figure S26. CH··· π interactions in the crystal of **6** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (0.5+x, 0.5-y, 0.5+z), (-0.5+x, 0.5+y, z) and (-0.5+x, -0.5+y, z) are given by "a", "b" and "c", respectively].

Intermolecular CH··· π interactions

$C(6)-H(6)\cdots Ph_{centroid} \{Py\}$	3.08 Å	$\gamma = 9.0^{\circ}$
$C(8)-H(8A)\cdots Ph_{centroid} \{C(14)-C(19)\}$	3.06 Å	γ = 18.9°
$C(13)-H(13)\cdots Ph_{centroid} \{C(20)-C(25)\}$	2.79 Å	$\gamma = 5.3^{\circ}$
$C(29)-H(29)\cdots Ph_{centroid} \{C(1)-C(6)\}$	2.83 Å	$\gamma = 18.3^{\circ}$

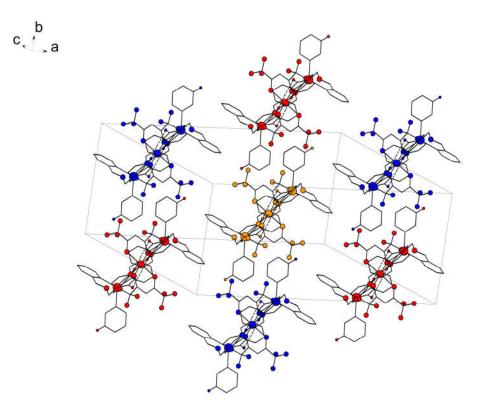


Figure S27. View along *b* axis of the 3D supramolecular architecture in the crystal packing of **6** (only hydrogen atoms involved in intermolecular contacts are shown).

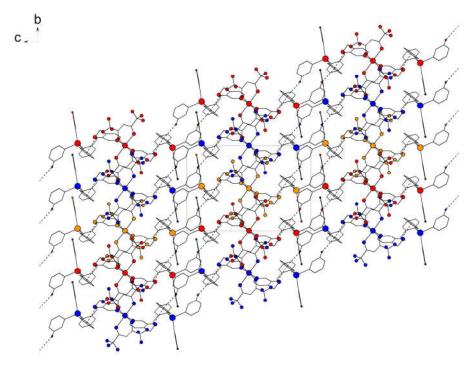


Figure S28. CH… π interactions in the crystal of **8** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (1-x, 1-y, 1-z), (1.5-x, 0.5-y, 2-z), (1.5-x, -0.5+y, 1.5-z), (-0.5+x, 1.5-y, -0.5+z) and (-0.5+x, 0.5+y, -1+z) are given by "a", "b", "c", "d" and "e", respectively; only the major occupancy site of the disordered CF₃ fragment is depicted].

Intramolecular H…F interactions F(5)–(H33) 2.50 Å F(2A)–(H33) 2.29 Å	$\sum r_{cov}(H)$ $\sum r_{vdW}(H)$	F,H) = 0.88 Å F,H) = 2.55 Å	
Intramolecular CH··· π interactions C(10)–H(10)···Ph _{centroid} {C(20)–C(25)	j)}	2.77 Å	$\gamma = 10.4^{\circ}$
Intermolecular CH $\cdots\pi$ interactions C(16)-H(16) \cdots Ph _{centroid} {C(20)-C(25) C(28)-H(28) \cdots Ph _{centroid} {Py}	j)}	2.88 Å 2.96 Å	$\gamma = 5.3^{\circ}$ $\gamma = 14.1^{\circ}$

Figure S29. View of the parallel chain-like polymers in the crystal of **8** generated by the CH $\cdots\pi$ interaction C(16)–H(16) \cdots Ph_{centroid}{C(20)–C(25)} (only hydrogen atoms involved in intermolecular contacts are shown).

Figure S30. View along *a* axis of the parallel chain-like polymers in the crystal of **8** generated by the CH··· π interaction C(16)–H(16)···Ph_{centroid}{C(20)–C(25)} (only hydrogen atoms involved in intermolecular contacts are shown).

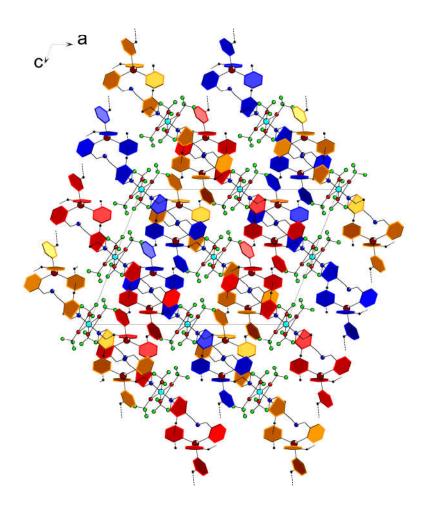


Figure S31. View along b axis of the 3D supramolecular architecture in the crystal of 8. Interconnected chain-like polymers are highlighted in different colours (only hydrogen atoms involved in intermolecular contacts are shown).