Supporting Information

N-doped porous biocarbon materials derived

from soya peptone as efficient electrocatalysts for ORR[†]

Song Liang,^{‡a} Zhi-Da Wang,^{‡a} Zhong-Feng Guo,^a Xin-Yu Chen,^b Si-Qi Li,^b Bing-Di Wang,^a Guo-Long Lu,^a Hang Sun,^a Zhen-Ning Liu ^{*a} and Hong-Ying Zang^b

^a Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China. E-mail: <u>liu_zhenning@jlu.edu.cn</u>

^b Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China [‡] Contributed equally

Figures and captions

Figure S1. XRD patterns of SP-800, SPZ-800-13, SPZ-800-15, SPZ-700-14, SPZ-900-14, and SPZ-1000-14.

Figure S2. Raman spectra of SP-800, SPZ-800-13, SPZ-800-15, SPZ-700-14, SPZ-900-14, and SPZ-1000-14.

Figure S3. EPR spectra of SPZ-800-14.

Figure S4. SEM of (a) SP-800, (b) SPZ-800-13, (c) SPZ-800-15, (d) SPZ-700-14, (e) SPZ-900-14, and (f) SPZ-1000-14.

Figure S5. Cyclic voltammetry (CV) curves of SP-800, SPZ-800-13, SPZ-800-15, SPZ-700-14, SPZ-900-14, and SPZ-1000-14 for ORR measured in Ar- and O₂- saturated 0.1 M KOH electrolyte.

Figure S6. The ORR catalytic activities of (a) SP-800, (b) SPZ-800-13, (c) SPZ-800-15, (d) SPZ-700-14, (e) SPZ-900-14, and (f) SPZ-1000-14 evaluated by LSV tests at different rotation rates (from 100 rpm to 2500 rpm) with a scan rate of 10 mV \cdot s⁻¹ in O₂- saturated 0.1 M KOH electrolyte.

Catalysts	Eonset	$E_{1/2}$	J_L
Catalysts	(V vs. RHE)	(V vs. RHE)	$(mA cm^{-2})$
SPZ-800-14	1.02	0.894	4.56
SP-800	0.871	0.751	2.89
SPZ-800-13	0.999	0.889	4.02
SPZ-800-15	0.985	0.887	4.09
SPZ-700-14	0.979	0.871	4.09
SPZ-900-14	0.957	0.835	3.81
SPZ-1000-14	0.946	0.818	3.36

Table S1. The ORR parameters compared with the catalysts in the paper.

Table S2. The ORR parameters compared with state-of-the-art ORR catalysts in the literature.

Catalysts	Eonset	$E_{1/2}$	J_L	Ref.	
	(V vs. RHE)	(V vs. RHE)	$(\mathrm{mA~cm}^{-2})$		
SPZ-800-14	1.02	0.894	4.56	This work	
SA-Zn-NHPC	1.00	0.87	5.85	[1]	
NCN-7	0.99	0.87	5.5	[2]	
WC-3-0.8	0.98	0.875	6.08	[3]	
Zn-S-N-C	0.962	0.894	-	[4]	
NHPC-0.5	1.004	0.883	3.4682	[5]	
G1000-ZC-2.0	1.03	0.885	6.2	[6]	
Zn-N-C	-	0.873	-	[7]	
DANC-800-138	0.985	0.813	-	[8]	
CTF-Super P-10	0.981	0.883	5.31	[9]	
WHCR-Zn	0.93	0.80	-	[10]	
DZ14	0.894	-	-	[11]	
PG300Z-800	0.98	0.8	3.1	[12]	
RZ9	0.91	-	-	[13]	
N/PC-800	0.958	0.799	3.99	[14]	
FS350Z-900	1.00	-	-	[15]	
WHC-700	0.98	-	4.15	[16]	
THNC-800	0.92		2.67	[17]	

Table S3. The performance of electrically Zn-air batteries in the literature.

Catalysts	Electrolyte	Peak power density $(mW \cdot cm^{-2})$	Stability	Ref.
SPZ-800-14	6.0 M KOH and 0.2 M Zn(Ac) ₂	70	90 h	This work
WC-3-0.8	6.0 M KOH and 0.2 M ZnCl ₂	84.1	-	[3]
NHPC-0.5	6 M KOH	25.1	100 cycles	[5]
MS-NPC	Gel electrolyte	127.9	-	[18]
G800	6 M KOH	-	18	[19]
N–CNSP	6 M KOH	160	160	[20]

References

[1] N. Wang, Z. Liu, J. Ma, J. Liu, P. Zhou, Y. Chao, C. Ma, X. Bo, J. Liu, Y. Hei, Y. Bi, M. Sun, M. Cao, H. Zhang, F. Chang, H.-L. Wang, P. Xu, Z. Hu, J. Bai, H. Sun, G. Hu, M. Zhou, *ACS Sustain. Chem. Eng.*, 2020, **8**, 13813-13822.

[2] F. Zhang, L. Liu, L. Chen, Y. Shi, New J. Chem., 2020, 44, 10613-10620.

[3] S. Yan, Z. Yu, C. Liu, Z. Yuan, C. Wang, J. Chen, L. Wei, Y. Chen, *Chem Asian J*, 2020, **15**, 1881-1889.

[4] Q.C. Cao, X.B. Ding, F. Li, Y.H. Qin, C. Wang, J. Colloid Interface Sci., 2020, 576, 139-146.

[5] H. Sun, H. Quan, M. Pan, Z. Zhang, Y. Zeng, D. Chen, J. Alloys Compd., 2020, 826, 154208.

[6] B. Huang, Y. Liu, Q. Guo, Y. Fang, M.-M. Titirici, X. Wang, Z. Xie, *Carbon*, 2020, **156**, 179-186.

[7] J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. Wei, *Angew. Chem. Int. Ed.*, 2019, **58**, 7035-7039.

[8] J. Xu, C. Xia, M. Li, R. Xiao, ChemElectroChem, 2019, 6, 5735-5743.

[9] Y. Cao, Y. Zhu, X. Chen, B.S. Abraha, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, *Catal. Sci. Technol.*, 2019, **9**, 6606-6612.

[10] M. Sriariyanun, K. Ketpang, J. Prathum, P. Juprasat, W. Junla, K. Wichianwat, A. Saejio, C. Poompipatpong, N. Chanunpanich, Y.S. Cheng, K. Rattanaporn, P. Yasurin, W. Rodiahwati, *E3S Web Conf.*, 2020, **141**, 01004.

[11] L. Mu, R. Wang, C. Tang, *Biomass Convers. Biorefin.*, 2019, 9, 401-409.

[12] J. Cheng, Int. J. Electrochem. Sci., 2018, 13, 11203-11214.

[13] Y. Wang, X. Jin, Y. Pan, J. Li, N. Guo, R, ChemNanoMat, 2018, 4, 954-963.

[14] J. Wu, J. Liu, L. Li, X. Wang, J. Mater. Sci., 2017, 52, 9794-9805.

[15] C. Guo, R. Hu, W. Liao, Z. Li, L. Sun, D. Shi, Y. Li, C. Chen, *Electrochim. Acta*, 2017, **236**, 228-238.

[16] X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang, S. Chen, Nanoscale, 2015, 7, 6136-6142.

[17] X. Liu, L. Li, W. Zhou, Y. Zhou, W. Niu, S. Chen, ChemElectroChem, 2015, 2, 803-810.

[18] X. Hao, W. Chen, Z. Jiang, X. Tian, X. Hao, T. Maiyalagan, Z.-J. Jiang, *Electrochim. Acta*, 2020, **362**, 137143.

[19] A. Ilnicka, M. Skorupska, P. Romanowski, P. Kamedulski, J.P. Lukaszewicz, *Materials* (*Basel*), 2020, **13**, 2115.

[20] L. Zong, W. Wu, S. Liu, H. Yin, Y. Chen, C. Liu, K. Fan, X. Zhao, X. Chen, F. Wang, Y. Yang, L. Wang, S. Feng, *Energy Stor. Mater.*, 2020, **27**, 514-521.