Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry

Supporting Information for

Synthesis of 1,3,4-Trisubstituted Pyrrolidines as Meropenem Adjuvants Targeting New Delhi Metallo-β-lactamase

Wen Bin Jin,^{‡,1,2} Chen Xu,^{‡,1,3} Xiao Lin Qi,¹ Ping Zeng,¹ Wei Gao,¹ Ki Hon Lai,¹ Jiachi Chiou,¹ Edward W. C. Chan,¹ Yun-Chung Leung,¹ Tak Hang Chan,^{1,4} Kwok-Yin Wong,¹ Sheng Chen^{*,5} and Kin-Fai Chan^{*,1}

¹ State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

² Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China

³ Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China

⁴ Department of Chemistry, McGill University, Montreal, Quebec, H3A 2K6, Canada

⁵ Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China

[‡]These authors contributed equally.

*Corresponding authors: Kin-Fai Chan and Sheng Chen For K.-F. C., email: kf.chan@polyu.edu.hk For S. C., email: shechen@cityu.edu.hk

Table of Content

Figure S1-S42	¹ H and ¹³ C NMR spectra of compounds 4 - 10	Page S3 – S44
Table S1	MIC screening of compound alone and MRM in the presence of the compound at 100 μ M against <i>E. coli</i> BL21(NDM-1), calculated cLogP, topological polar surface area (tPSA) and reduction fold (RF).	Page S45– S47
Figure S43	X-ray crystal structure of 9b	Page S48
Figure S44	HPLC chromatogram of 6a	Page S49
Table S2	Crystal data and structure refinement for compound 9b .	Page S50 – S67

Figure S1. ¹H and ¹³C NMR spectra of methyl ferulate (4b)

methoxyphenyl)acrylate (5a)

Figure S3. ¹H and ¹³C NMR spectra of (*E*)-methyl 3-(4-(allyloxy)-3-

methoxyphenyl)acrylate (5b)

((methylsulfonyl)oxy)phenyl)acrylate (5c)

Figure S5. ¹H and ¹³C NMR spectra of (*E*)-methyl 3-(4-acetoxy-3-methoxyphenyl)acrylate (5d)

methoxyphenyl)pyrrolidine-3-carboxylate (6a)

1-benzylpyrrolidine-3-carboxylate (6b)

((methylsulfonyl)oxy)phenyl)pyrrolidine-3-carboxylate (6c)

benzylpyrrolidine-3-carboxylate (6d)

methoxyphenyl)pyrrolidine-3-carboxylate (7a)

methoxyphenyl)-1-(dimethoxyphosphoryl)pyrrolidine-3-carboxylate (8a)

(dimethoxyphosphoryl)pyrrolidine-3-carboxylate (8b)

Figure S13. ¹H and ¹³C NMR spectra of (±)-trans-methyl 1-(dimethoxyphosphoryl)-4-(3-

methoxy-4-((methylsulfonyl)oxy)phenyl)pyrrolidine-3-carboxylate (8c)

Figure S14. ¹H and ¹³C NMR spectra of (±)-*trans*-methyl 4-(4-acetoxy-3-methoxyphenyl)-

1-(dimethoxyphosphoryl)pyrrolidine-3-carboxylate (8d)

Figure S15. ¹H and ¹³C NMR spectra of (±)-trans-1-ethyl 3-methyl 4-(4-benzyloxy)-3-

methoxyphenyl)pyrrolidine-1,3-dicarboxylate (7e)

Figure S16. ¹H and ¹³C NMR spectra of (±)-*trans*-4-(4-(benzyloxy)-3-methoxyphenyl)-1-

(ethoxycarbonyl)pyrrolidine-3-carboxylic acid (7g)

methoxyphenyl)-4-carbamoylpyrrolidine-1-carboxylate (7h)

Figure S18. ¹H and ¹³C NMR spectra of (±)-trans-ethyl 3-(4-(benzyloxy)-3-

methoxyphenyl)-4-(hydroxymethyl)pyrrolidine-1-carboxylate (7f)

Figure S19. ¹H and ¹³C NMR spectra of (±)-trans-1-ethyl 3-methyl 4-(4-hydroxy-3-

methoxyphenyl)pyrrolidine-1,3-dicarboxylate (7i)

methoxyphenyl)pyrrolidine-3-carboxylic acid (7j)

Figure S21. ¹H and ¹³C NMR spectra of (±)-*trans*-methyl 4-(4-(benzyloxy)-3-

methoxyphenyl)-1-(2-(*tert*-butoxy)-2-oxoethyl)pyrrolidine-3-carboxylate (8e)

Figure S22. ¹H and ¹³C NMR spectra of 2-((±)-trans-3-(4-benzyloxy)-3-methoxyphenyl)-4-

(methoxycarbonyl)pyrrolidin-1-yl)acetic acid (8g)

Figure S23. ¹H and ¹³C NMR spectra of (±)-*trans*-methyl 4-(4-(benzyloxy)-3-

methoxyphenyl)-1-(2-isopropoxy-2-oxoethyl)pyrrolidine-3-carboxylate (8f)

Figure S24. ¹H and ¹³C NMR spectra of (±)-trans-methyl 4-(4-(benzyloxy)-3-

methoxyphenyl)-1-(3-ethoxy-3-oxopropyl)pyrrolidine-3-carboxylate (8h)

Figure S25. ¹H and ¹³C NMR spectra of(±)-trans-methyl 4-(4-(benzyloxy)-3-

methoxyphenyl)-1-((R)-2,3-dihydroxypropyl)pyrrolidine-3-carboxylate (8i)

Figure S26. ¹H and ¹³C NMR spectra of 5-((±)-trans-3-(4-(benzyloxy)-3-methoxyphenyl)-4-

(methoxycarbonyl)pyrrolidin-1-yl)-2,2-dimethyl-5-oxopentanoic acid (8j)

Figure S27. ¹H and ¹³C NMR spectra of (±)-trans-4-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-

carboxy-3,3-dimethylbutanoyl)pyrrolidine-3-carboxylic acid (8k)

Figure S28. ¹H and ¹³C NMR spectra of (E)-4- $((\pm)$ -trans-3-(4-(benzyloxy)-3-

methoxyphenyl)-4-(methoxycarbonyl)pyrrolidin-1-yl)-4-oxobut-2-enoic acid (8l)

Figure S29. ¹H and ¹³C NMR spectra of 4-((±)-trans-3-(4-(benzyloxy)-3-methoxyphenyl)-4-

(methoxycarbonyl)pyrrolidine-1-yl)-4-oxobutanoic acid (8m)

Figure S30. ¹H and ¹³C NMR spectra of 2-(3-(4-(benzyloxy)-3-methoxyphenyl)-4-

(methoxycarbonyl)pyrrolidine-1-carbonyl)benzoic acid (8n)

methoxyphenyl)-1-(methylsulfonyl)pyrrolidine-3-carboxylate (9a)

1-(methylsulfonyl)pyrrolidine-3-carboxylate (10a)

(methylsulfonyl)pyrrolidine-3-carboxylate (10b)

Figure S34. ¹H and ¹³C NMR spectra of (±)-trans-methyl 4-(4-(benzyloxy)-3-

methoxyphenyl)-1-(*N*,*N*-dimethylsulfamoyl)pyrrolidine-3-carboxylate (9b)

Figure S35. ¹H and ¹³C NMR spectra of (±)-trans-4-(4-(benzyloxy)-3-methoxyphenyl)-1-

(N,N-dimethylsulfamonyl)pyrrolidine-3-carboxylic acid (10c)

Figure S36. ¹H and ¹³C NMR spectra of (±)-trans-methyl 4-(4-(benzyloxy)-3-

methoxyphenyl)-1-(2-(2,6-difluorophenyl)acetyl)pyrrolidine-3-carboxylate (9c)

Figure S37. ¹H and ¹³C NMR spectra of (±)-methyl 4-(4-(benzyloxy)-3-methoxyphenyl)-1-

picolinoylpyrrolidine-3-carboxylate (9d)

methoxyphenyl)-1-(2-chloroacetyl)pyrrolidine-3-carboxylate (9e)

(benzyloxy)-3-methoxyphenyl)pyrrolidine-3-carboxylate (10d)

Figure S40. ¹H and ¹³C NMR spectra of (±)-trans-methyl 4-(4-(benzyloxy)-3-

methoxy phenyl) - 1 - (2 - (bis(pyridin - 2 - ylmethyl) amino) a cetyl) pyrrolidine - 3 - carboxylate

methoxyphenyl)-4-(methoxycarbonyl)pyrrolidine-1-carbonyl)picolinate (9f)

Figure S41. ¹H and ¹³C NMR spectra of (±)-trans-methyl 6-((3S,4R)-3-(4-(benzyloxy)-3-

Figure S42. ¹H and ¹³C NMR spectra of (±)-trans-6-(3-(4-(benzyloxy)-3-methoxyphenyl)-4-

carboxypyrrolidine-1-carbonyl)picolinic acid (10f)

Table S1. MIC screening of compound alone and MRM in the presence of the compound at 100 μ M against *E. coli* BL21(NDM-1), calculated cLogP, topological polar surface area (tPSA) and reduction fold (RF).

			Г	R ₁ N					
		MeC		R ₂ uo	O N	N			
		R ₃	6 - 10	- HO	ں 11	N			
Entry	Cpd No.	R_1	R_2	R ₃	cLogP ^a	tPSA ^a	MIC Cpd	(µg/mL) MRM ^b	- RF ^c
1	MRM	$N.A.^d$	N.A.	N.A.	N.A.	N.A.	128	N.A.	N.A.
2	10e		CO ₂ Me	OBn	3.68	93.03	>128	0.5	256
3	11	N.A.	N.A.	N.A.	0.53	65.26	>128	4	32
4	8k	CO ₂ H	CO ₂ Me	OBn	3.80	102.37	>128	8	16
5	9d	O N N	CO ₂ Me	OBn	2.97	77.43	>128	8	16
6	9c	O F F	CO ₂ Me	OBn	4.82	65.07	>128	8	16
7	81	O CO ₂ H	CO ₂ Me	OBn	3.15	102.37	>128	16	8
8	9e	O کر CI	CO ₂ Me	OBn	3.04	65.07	>128	16	8
9	8e		CO ₂ Me	OBn	4.79	74.30	>128	32	4
10	8f		CO ₂ Me	OBn	4.39	74.30	>128	32	4
11	9b	OO ⁵² S NMe ₂	CO ₂ H	OBn	2.37	96.38	>128	32	4
12	7j	O J OEt	CO ₂ H	OH	1.52	96.30	>128	32	4
13	8d	O II ² ² OMe	CO ₂ Me	OAc	0.68	100.60	>128	32	4
14	10f	O N CO ₂ H	CO ₂ H	OBn	2.76	125.73	>128	32	4
15	8i	[,] ОН	CO ₂ Me	OBn	2.61	88.46	>128	32	4

16	7a	_{'22} H	CO ₂ Me	OBn	3.31	56.79	>128	64	2
17	9a	O S Me	CO ₂ Me	OBn	2.89	82.14	>128	64	2
18	10a	O S Me	CO ₂ Me	ОН	0.64	93.14	>128	64	2
19	10b	O U S Me	CO ₂ Me	OMe	1.12	82.14	>128	64	2
20	7e	O J OEt	CO ₂ Me	OBn	4.23	74.30	>128	64	2
21	8g	COH	CO ₂ Me	OBn	1.24	85.30	>128	64	2
22	7g	O J OEt	CO ₂ H	OBn	3.76	85.30	>128	64	2
23	8h	O U OEt	CO ₂ Me	OBn	4.36	74.30	>128	64	2
24	7 f	O J OEt	CH ₂ OH	OBn	3.66	68.23	>128	64	2
25	7h	O J OEt	CONH ₂	OBn	3.05	91.09	>128	64	2
26	8j	о ² СО ₂ Н	CO ₂ Me	OBn	3.71	102.37	>128	64	2
27	8 a	OMe	CO ₂ Me	OBn	3.01	83.53	>128	64	2
28	6с	-2	CO ₂ Me	OMs	2.83	82.14	>128	64	2
29	6b	3	CO ₂ Me	OAllyl	4.25	48.00	>128	64	2
30	8b	OMe 22 OMe	CO ₂ Me	OAllyl	2.02	83.53	>128	64	2
31	8n	O CO ₂ H	CO ₂ Me	OBn	4.07	102.37	>128	64	2
32	6a	-22	CO ₂ Me	OBn	5.24	48.00	>128	>128	<1
33	6d	2	CO ₂ Me	OAc	2.90	65.07	>128	>128	<1
34	7i	O ² OEt	CO ₂ Me	ОН	1.98	85.30	>128	>128	<1
35	9b	O S NMe ₂	CO ₂ Me	OBn	2.84	85.38	>128	>128	<1
36	8c	OMe ³ P OMe	CO ₂ Me	OMs	0.60	117.67	>128	>128	<1
37	8m	O CO ₂ H	CO ₂ Me	OBn	2.75	102.37	>128	>128	<1

38	10d	O بخريب SAc	CO ₂ Me	OBn	3.44	82.14	>128	>128	<1
39	9f	N CO ₂ Me	CO ₂ Me	OBn	2.60	103.73	>128	>128	<1

^{*a*}Compound's cLogP and tPSA values were calculated using the ChemDraw Ultra (version 12.0). ^{*b*}MIC value of MRM in the presence of 100 μ M of compound; ^{*c*}Reduction fold (RF) was calculated by MIC of MRM alone divided by MIC of MRM in the presence of 100 μ M of the test compound; ^{*d*}N.A.: Not Applicable; N = 1-3 independent experiments.

Figure S44. HPLC chromatogram of 6a

HPLC conditions: Column: CHIRALCEL® OJ column (4.6 x 250 mm); Temperature: 23°C; Flow rate: 1.0 mL/min; UV detection: 280 nm (reference 400 nm); Mobile phase (isocratic elution): 98% Hexane, 2% isopropyl alcohol; Retention time for less polar enantiomer of **6a**: 22 min; Retention time for more polar enantiomer of **6a**: 30 min;

Identification code	jwb1		
Empirical formula	$C_{22}H_{28}N_2O_6S$		
Formula weight	448.52		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 5.64480(10) Å	α= 90°.	
	b = 35.3410(9) Å	β= 91.3550(10)°.	
	c = 10.9173(3) Å	$\gamma = 90^{\circ}.$	
Volume	2177.31(9) Å ³		
Z	4		
Density (calculated)	1.368 Mg/m ³		
Absorption coefficient	0.190 mm ⁻¹		
F(000)	952		
Crystal size	$0.50 \text{ x } 0.40 \text{ x } 0.40 \text{ mm}^3$		
Theta range for data collection	1.95 to 27.52°.		
Index ranges	-7<=h<=7, -45<=k<=45, -14<=	=l<=13	
Reflections collected	47726		
Independent reflections	5001 [R(int) = 0.0358]		
Completeness to theta = 27.52°	99.8 %		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	0.7456 and 0.6858		
Refinement method Full-matrix least-squares on F ²			
Data / restraints / parameters 5001 / 0 / 346			

Table S2. Crystal data and structure refinement for compound 9b.

Goodness-of-fit on F ²	1.001
Final R indices [I>2sigma(I)]	R1 = 0.0839, wR2 = 0.1814
R indices (all data)	R1 = 0.1023, wR2 = 0.1926
Largest diff. peak and hole	0.913 and -0.750 e.Å ⁻³

	Х	у	Z	U(eq)
S(1)	8761(1)	2450(1)	4022(1)	46(1)
O(1)	16776(3)	747(1)	-708(2)	55(1)
O(2)	13172(3)	1163(1)	-1249(2)	54(1)
O(3)	12248(6)	1026(1)	5194(3)	116(1)
O(4)	15824(5)	1238(1)	5459(2)	102(1)
O(5)	7802(3)	2423(1)	5213(2)	64(1)
O(6)	7251(3)	2469(1)	2959(2)	64(1)
N(1)	10444(5)	2088(1)	3871(2)	66(1)
N(2)	10305(4)	2838(1)	4015(2)	51(1)
C(1)	13156(7)	1599(1)	4271(3)	79(1)
C(2)	11493(6)	1882(1)	4902(2)	68(1)
C(3)	11267(5)	1952(1)	2690(2)	59(1)
C(4)	12357(7)	1581(1)	3032(3)	82(1)
C(5)	13769(5)	1386(1)	2054(2)	48(1)
C(6)	12844(4)	1381(1)	857(2)	45(1)
C(7)	13925(4)	1176(1)	-50(2)	41(1)
C(8)	15928(4)	958(1)	238(2)	43(1)
C(9)	16892(4)	973(1)	1407(2)	50(1)
C(10)	15830(5)	1188(1)	2304(2)	50(1)
C(11)	18613(5)	482(1)	-402(3)	54(1)
C(12)	18955(4)	231(1)	-1493(2)	49(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for jwb1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(13)	20896(5)	272(1)	-2215(3)	62(1)
C(14)	21226(6)	37(1)	-3201(3)	76(1)
C(15)	19652(7)	-246(1)	-3462(3)	75(1)
C(16)	17706(6)	-293(1)	-2741(4)	80(1)
C(17)	17385(5)	-56(1)	-1768(3)	70(1)
C(18)	11221(5)	1395(1)	-1613(3)	55(1)
C(19)	13764(6)	1276(1)	5021(2)	61(1)
C(20)	16260(7)	866(1)	6116(3)	93(1)
C(21)	11943(5)	2900(1)	5055(3)	59(1)
C(22)	11259(6)	2964(1)	2849(3)	70(1)

Table 3. Bond lengths [Å] and angles [°] for jwb1.

S(1)-O(5)	1.423(2)
S(1)-O(6)	1.4247(19)
S(1)-N(1)	1.603(2)
S(1)-N(2)	1.624(2)
O(1)-C(8)	1.369(3)
O(1)-C(11)	1.431(3)
O(2)-C(7)	1.368(3)
O(2)-C(18)	1.422(3)
O(3)-C(19)	1.247(4)
O(4)-C(19)	1.254(4)
O(4)-C(20)	1.516(5)
N(1)-C(2)	1.456(3)
N(1)-C(3)	1.462(3)
N(2)-C(22)	1.463(4)
N(2)-C(21)	1.464(3)
C(1)-C(4)	1.417(4)
C(1)-C(19)	1.443(4)
C(1)-C(2)	1.545(4)
C(1)-H(1A)	0.9800
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(4)	1.491(4)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700

C(4)-C(5)	1.515(4)
C(4)-H(4A)	0.9800
C(5)-C(10)	1.379(4)
C(5)-C(6)	1.396(3)
C(6)-C(7)	1.381(3)
C(6)-H(6A)	0.97(2)
C(7)-C(8)	1.398(3)
C(8)-C(9)	1.377(3)
C(9)-C(10)	1.386(4)
C(9)-H(9A)	0.87(3)
C(10)-H(10A)	0.93(3)
C(11)-C(12)	1.501(4)
C(11)-H(11A)	1.00(3)
C(11)-H(11B)	1.00(3)
C(12)-C(13)	1.373(4)
C(12)-C(17)	1.374(4)
C(13)-C(14)	1.377(4)
C(13)-H(13A)	0.90(3)
C(14)-C(15)	1.363(5)
C(14)-H(14A)	0.9300
C(15)-C(16)	1.377(5)
C(15)-H(15A)	0.85(3)
C(16)-C(17)	1.369(5)
C(16)-H(16A)	0.94(4)
C(17)-H(17A)	0.90(4)
C(18)-H(18A)	0.98(3)

C(18)-H(18B)	0.97(3)
C(18)-H(18C)	0.98(3)
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(21)-H(21A)	1.00(3)
C(21)-H(21B)	0.96(3)
C(21)-H(21C)	1.01(4)
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600

O(5)-S(1)-O(6)	120.93(12)
O(5)-S(1)-N(1)	106.24(12)
O(6)-S(1)-N(1)	107.34(12)
O(5)-S(1)-N(2)	106.10(12)
O(6)-S(1)-N(2)	105.47(12)
N(1)-S(1)-N(2)	110.63(13)
C(8)-O(1)-C(11)	116.43(19)
C(7)-O(2)-C(18)	117.97(19)
C(19)-O(4)-C(20)	114.2(3)
C(2)-N(1)-C(3)	112.6(2)
C(2)-N(1)-S(1)	123.41(18)
C(3)-N(1)-S(1)	123.72(18)
C(22)-N(2)-C(21)	113.0(2)
C(22)-N(2)-S(1)	118.03(19)

C(21)-N(2)-S(1)	116.86(18)
C(4)-C(1)-C(19)	124.9(3)
C(4)-C(1)-C(2)	105.8(3)
C(19)-C(1)-C(2)	113.5(3)
C(4)-C(1)-H(1A)	103.4
C(19)-C(1)-H(1A)	103.4
C(2)-C(1)-H(1A)	103.4
N(1)-C(2)-C(1)	102.7(2)
N(1)-C(2)-H(2A)	111.2
C(1)-C(2)-H(2A)	111.2
N(1)-C(2)-H(2B)	111.2
C(1)-C(2)-H(2B)	111.2
H(2A)-C(2)-H(2B)	109.1
N(1)-C(3)-C(4)	101.9(2)
N(1)-C(3)-H(3A)	111.4
C(4)-C(3)-H(3A)	111.4
N(1)-C(3)-H(3B)	111.4
C(4)-C(3)-H(3B)	111.4
H(3A)-C(3)-H(3B)	109.2
C(1)-C(4)-C(3)	108.7(3)
C(1)-C(4)-C(5)	122.1(3)
C(3)-C(4)-C(5)	116.5(2)
C(1)-C(4)-H(4A)	102.0
C(3)-C(4)-H(4A)	102.0
C(5)-C(4)-H(4A)	102.0
C(10)-C(5)-C(6)	118.3(2)

C(10)-C(5)-C(4)	123.2(2)
C(6)-C(5)-C(4)	118.3(2)
C(7)-C(6)-C(5)	121.1(2)
C(7)-C(6)-H(6A)	118.7(15)
C(5)-C(6)-H(6A)	120.2(15)
O(2)-C(7)-C(6)	124.9(2)
O(2)-C(7)-C(8)	115.3(2)
C(6)-C(7)-C(8)	119.8(2)
O(1)-C(8)-C(9)	125.6(2)
O(1)-C(8)-C(7)	115.2(2)
C(9)-C(8)-C(7)	119.1(2)
C(8)-C(9)-C(10)	120.6(2)
C(8)-C(9)-H(9A)	118.8(18)
C(10)-C(9)-H(9A)	120.5(18)
C(5)-C(10)-C(9)	120.9(2)
C(5)-C(10)-H(10A)	121.5(18)
C(9)-C(10)-H(10A)	117.6(18)
O(1)-C(11)-C(12)	107.9(2)
O(1)-C(11)-H(11A)	110.4(19)
C(12)-C(11)-H(11A)	108.1(18)
O(1)-C(11)-H(11B)	105.4(17)
C(12)-C(11)-H(11B)	113.7(17)
H(11A)-C(11)-H(11B)	111(2)
C(13)-C(12)-C(17)	118.2(3)
C(13)-C(12)-C(11)	120.8(2)
C(17)-C(12)-C(11)	121.0(3)

C(12)-C(13)-C(14)	120.6(3)
C(12)-C(13)-H(13A)	121.0(19)
C(14)-C(13)-H(13A)	118.3(19)
C(15)-C(14)-C(13)	120.5(3)
C(15)-C(14)-H(14A)	119.8
C(13)-C(14)-H(14A)	119.8
C(14)-C(15)-C(16)	119.6(3)
C(14)-C(15)-H(15A)	124(2)
C(16)-C(15)-H(15A)	116(2)
C(17)-C(16)-C(15)	119.5(3)
C(17)-C(16)-H(16A)	119(3)
C(15)-C(16)-H(16A)	122(3)
C(16)-C(17)-C(12)	121.7(3)
C(16)-C(17)-H(17A)	119(2)
C(12)-C(17)-H(17A)	119(2)
O(2)-C(18)-H(18A)	109.6(17)
O(2)-C(18)-H(18B)	111.7(17)
H(18A)-C(18)-H(18B)	111(2)
O(2)-C(18)-H(18C)	105.3(18)
H(18A)-C(18)-H(18C)	106(2)
H(18B)-C(18)-H(18C)	112(2)
O(3)-C(19)-O(4)	120.1(3)
O(3)-C(19)-C(1)	119.5(3)
O(4)-C(19)-C(1)	120.4(3)
O(4)-C(20)-H(20A)	109.5
O(4)-C(20)-H(20B)	109.5

H(20A)-C(20)-H(20B)	109.5
O(4)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
N(2)-C(21)-H(21A)	109.9(18)
N(2)-C(21)-H(21B)	108.3(19)
H(21A)-C(21)-H(21B)	110(3)
N(2)-C(21)-H(21C)	108(2)
H(21A)-C(21)-H(21C)	109(3)
H(21B)-C(21)-H(21C)	112(3)
N(2)-C(22)-H(22A)	109.5
N(2)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
N(2)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S (1)	41(1)	54(1)	41(1)	-8(1)	2(1)	6(1)
O(1)	62(1)	56(1)	46(1)	1(1)	6(1)	27(1)
O(2)	62(1)	57(1)	42(1)	-9(1)	-5(1)	20(1)
O(3)	170(3)	82(2)	96(2)	16(2)	8(2)	-30(2)
O(4)	80(2)	160(3)	65(1)	13(2)	-8(1)	13(2)
O(5)	62(1)	77(1)	54(1)	-4(1)	22(1)	4(1)
O(6)	51(1)	81(1)	61(1)	-16(1)	-15(1)	8(1)
N(1)	95(2)	67(1)	35(1)	0(1)	6(1)	38(1)
N(2)	57(1)	59(1)	37(1)	-1(1)	-4(1)	-2(1)
C(1)	121(3)	70(2)	45(2)	5(1)	8(2)	43(2)
C(2)	99(2)	66(2)	39(1)	0(1)	1(1)	34(2)
C(3)	78(2)	62(2)	38(1)	-3(1)	6(1)	24(1)
C(4)	111(2)	93(2)	42(1)	-4(1)	3(2)	57(2)
C(5)	56(1)	48(1)	41(1)	-1(1)	6(1)	10(1)
C(6)	48(1)	45(1)	43(1)	-1(1)	2(1)	11(1)
C(7)	44(1)	39(1)	40(1)	1(1)	3(1)	2(1)
C(8)	44(1)	41(1)	44(1)	1(1)	10(1)	5(1)
C(9)	43(1)	58(1)	49(1)	6(1)	5(1)	13(1)
C(10)	52(1)	58(1)	40(1)	1(1)	0(1)	6(1)
C(11)	56(1)	53(1)	55(2)	3(1)	7(1)	20(1)
C(12)	48(1)	41(1)	57(1)	5(1)	5(1)	15(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for jwb1. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(13)	61(2)	56(2)	70(2)	-4(1)	15(1)	-4(1)
C(14)	76(2)	77(2)	77(2)	-12(2)	28(2)	3(2)
C(15)	90(2)	61(2)	73(2)	-18(2)	2(2)	14(2)
C(16)	71(2)	62(2)	106(3)	-18(2)	-3(2)	-6(2)
C(17)	56(2)	68(2)	87(2)	-4(2)	15(2)	-4(1)
C(18)	60(2)	55(1)	50(1)	-1(1)	-6(1)	13(1)
C(19)	75(2)	68(2)	39(1)	-3(1)	4(1)	14(2)
C(20)	106(3)	96(2)	77(2)	38(2)	8(2)	43(2)
C(21)	59(2)	66(2)	52(2)	-10(1)	-12(1)	1(1)
C(22)	76(2)	80(2)	53(2)	8(2)	3(2)	-7(2)

	Х	у	Z	U(eq)
H(1A)	14654	1738	4227	95
H(2A)	10293	1751	5362	101(12)
H(2B)	12375	2050	5448	121
H(3A)	12424	2123	2349	82(10)
H(3B)	9959	1920	2107	98
H(4A)	10963	1417	3085	98
H(6A)	11400(40)	1519(7)	650(20)	48(7)
H(9A)	18110(50)	833(8)	1590(20)	54(7)
H(10A)	16570(50)	1195(8)	3070(30)	63(8)
H(11A)	20130(60)	617(9)	-230(30)	77(10)
H(11B)	18060(50)	345(8)	330(30)	68(9)
H(13A)	21950(50)	458(8)	-2070(30)	67(9)
H(14A)	22533	71	-3692	91
H(15A)	19810(60)	-408(9)	-4030(30)	76(10)
H(16A)	16550(70)	-479(12)	-2910(40)	121(14)
H(17A)	16090(70)	-86(11)	-1300(30)	103(13)
H(18A)	11640(50)	1661(9)	-1490(30)	68(9)
H(18B)	9800(50)	1329(8)	-1180(30)	63(8)
H(18C)	11040(50)	1358(9)	-2500(30)	73(9)
H(20A)	17919	840	6311	160(20)

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for jwb1.

H(20B)	15756	661	5596	147(18)
H(20C)	15379	861	6858	176
H(21A)	13470(50)	2764(9)	4920(30)	73(9)
H(21B)	11220(50)	2802(9)	5780(30)	75(9)
H(21C)	12270(60)	3179(10)	5120(30)	92(11)
H(22A)	12692	2828	2690	80(10)
H(22B)	11593	3230	2890	96(12)
H(22C)	10118	2916	2201	115

Table 6. Torsion angles [°] for jwb1.

O(5)-S(1)-N(1)-C(2)	-23.0(3)
O(6)-S(1)-N(1)-C(2)	-153.7(3)
N(2)-S(1)-N(1)-C(2)	91.7(3)
O(5)-S(1)-N(1)-C(3)	162.9(2)
O(6)-S(1)-N(1)-C(3)	32.3(3)
N(2)-S(1)-N(1)-C(3)	-82.3(3)
O(5)-S(1)-N(2)-C(22)	-172.4(2)
O(6)-S(1)-N(2)-C(22)	-42.9(2)
N(1)-S(1)-N(2)-C(22)	72.8(2)
O(5)-S(1)-N(2)-C(21)	47.7(2)
O(6)-S(1)-N(2)-C(21)	177.10(19)
N(1)-S(1)-N(2)-C(21)	-67.1(2)
C(3)-N(1)-C(2)-C(1)	1.3(4)
S(1)-N(1)-C(2)-C(1)	-173.3(2)
C(4)-C(1)-C(2)-N(1)	-18.5(4)
C(19)-C(1)-C(2)-N(1)	-159.0(3)
C(2)-N(1)-C(3)-C(4)	15.2(3)
S(1)-N(1)-C(3)-C(4)	-170.1(2)
C(19)-C(1)-C(4)-C(3)	163.9(3)
C(2)-C(1)-C(4)-C(3)	29.3(4)
C(19)-C(1)-C(4)-C(5)	-55.9(6)
C(2)-C(1)-C(4)-C(5)	169.5(3)
N(1)-C(3)-C(4)-C(1)	-27.6(4)
N(1)-C(3)-C(4)-C(5)	-170.3(3)

C(1)-C(4)-C(5)-C(10)	4.9(5)
C(3)-C(4)-C(5)-C(10)	142.2(3)
C(1)-C(4)-C(5)-C(6)	179.9(3)
C(3)-C(4)-C(5)-C(6)	-42.8(4)
C(10)-C(5)-C(6)-C(7)	1.6(4)
C(4)-C(5)-C(6)-C(7)	-173.6(3)
C(18)-O(2)-C(7)-C(6)	4.2(4)
C(18)-O(2)-C(7)-C(8)	-176.7(2)
C(5)-C(6)-C(7)-O(2)	-178.5(2)
C(5)-C(6)-C(7)-C(8)	2.4(4)
C(11)-O(1)-C(8)-C(9)	9.1(4)
C(11)-O(1)-C(8)-C(7)	-171.6(2)
O(2)-C(7)-C(8)-O(1)	-3.2(3)
C(6)-C(7)-C(8)-O(1)	176.0(2)
O(2)-C(7)-C(8)-C(9)	176.1(2)
C(6)-C(7)-C(8)-C(9)	-4.7(4)
O(1)-C(8)-C(9)-C(10)	-177.8(2)
C(7)-C(8)-C(9)-C(10)	3.0(4)
C(6)-C(5)-C(10)-C(9)	-3.4(4)
C(4)-C(5)-C(10)-C(9)	171.6(3)
C(8)-C(9)-C(10)-C(5)	1.1(4)
C(8)-O(1)-C(11)-C(12)	169.2(2)
O(1)-C(11)-C(12)-C(13)	105.8(3)
O(1)-C(11)-C(12)-C(17)	-76.7(3)
C(17)-C(12)-C(13)-C(14)	1.2(4)
C(11)-C(12)-C(13)-C(14)	178.8(3)

C(12)-C(13)-C(14)-C(15)	-1.2(5)
C(13)-C(14)-C(15)-C(16)	0.7(5)
C(14)-C(15)-C(16)-C(17)	-0.3(6)
C(15)-C(16)-C(17)-C(12)	0.3(5)
C(13)-C(12)-C(17)-C(16)	-0.8(5)
C(11)-C(12)-C(17)-C(16)	-178.3(3)
C(20)-O(4)-C(19)-O(3)	3.3(4)
C(20)-O(4)-C(19)-C(1)	-174.1(3)
C(4)-C(1)-C(19)-O(3)	-58.5(5)
C(2)-C(1)-C(19)-O(3)	73.1(4)
C(4)-C(1)-C(19)-O(4)	118.8(4)
C(2)-C(1)-C(19)-O(4)	-109.5(4)

Symmetry transformations used to generate equivalent atoms: