Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Acid etching induced defective Co₃O₄ as an efficient catalyst for methane combustion reaction

Liurui Bao^{a, 1}, Le Chang^{a, 1}, Lisha Yao^b, Wenhao Meng^a, Qiang Yu^a, Xin Zhang^a, Xuehua Liu^a, Xianfen Wang^a, Wei Chen^c, Xingyun Li^{a, b,*}

^aInstitute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

^cKey Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, China

E-mail: xingyun 2008@sina.cn (X. Li)

¹ These authors contributed equally to this work.

^{*} Corresponding Authors:

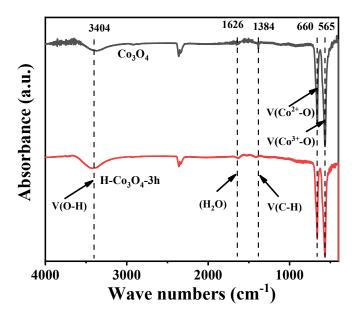
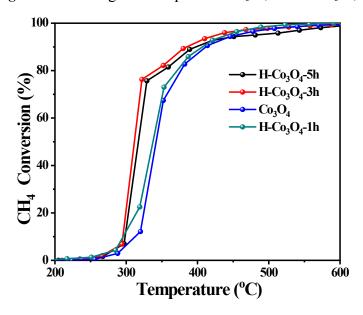



Fig. S1. FTIR images of the pristine Co₃O₄ and H-Co₃O₄-3h

Fig.S2. Light-off curves for CH₄ oxidation over Co_3O_4 etched at different time (gas mixer: 2% CH₄, 20% O_2 , Ar as balance gas, WHSV= 33,000 mL g^{-1} h^{-1}).

Table S1. Mass change for H-Co₃O₄ at different etching time.

Sample	Initial mass (mg)	Mass after etching (mg)	Mass loss
H-Co ₃ O ₄ -1h	200	184	8%
H-Co ₃ O ₄ -3h	200	168	16%
H-Co ₃ O ₄ -5h	200	162	19%