Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

1	Supplementary Material				
2					
3	A mixed valence state Mo-base metal-organic framework				
4	from photo activation as surface-enhanced Raman				
5	scattering substrate				
6	Zhengyi Chen ^a , Linjing Su ^{b*} , Xionghui Ma ^{c*} , Zhenhua Duan ^b and Yuhao Xiong ^{b*}				
7					
8	a. Pharmacy School, Guilin Medical University, Guilin, 541004, P. R. China				
9	b. College of Food and Bioengineering, Hezhou University, Hezhou, 542899, P.				
10	R. China				
11	c. Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and				
12	Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural				
13	Sciences, Haikou, 571101, China				
14					
15	* Corresponding author: Yuhao Xiong, Linjing Su, Xionghui Ma				
16					
17	Tel.: +86-774-5229756				
18	Fax.: +86-774-5228605				
19 20 21	E-mail : xiongyuhao@yeah.net, linjingsu@163.com, maxionghui@foxmail.com				

22 Figure

23 24	Fig. S1 Schematic of the crystal structures for Mo-MOF ¹ .
25	

2 Theta(Degree)30 Fig. S3 XRD spectra of Mo-MOF (1) and mixed valence state UV Mo-MOF (2).
31

Fig. S4 FT-IR spectra of Mo-MOF (1) and mixed valence state UV Mo-MOF (2).

Fig. S5 High resolution XPS of the Mo 3d of Mo-MOF and mixed valence state UV
 Mo-MOF.

40 Fig. S6 High resolution XPS of the O 1s of Mo-MOF and mixed valence state UV
41 Mo-MOF.

Fig. S7 Pore size distribution (a) and N₂ adsorption ability (b) of mixed valence state
 UV Mo-MOF.

47

Fig. S8 The distribution of SERS signal of MB on mixed valence state UV Mo-MOF.
(a) The SERS peak area region of MB (10⁻⁵ M) for mapping. (b) Optical photograph
of mixed valence state UV Mo-MOF absorbed with MB. (c) Optical photograph
covered with SERS mapping at 449 cm⁻¹. (d) Optical photograph covered with SERS
mapping at 1623 cm⁻¹.

- 57 by mixed valence state UV Mo-MOF.

Fig. 10 Mixed valence state UV Mo-MOF SERS spectra of CV with different
 concentrations.

66	Table
66	I able

67	Table S1. The BET analysis results of UV Mo-MOF					
	Samples	BET surface area $(m^2 g^{-1})$	BJH adsorption average pore width (nm)	BJH desorption average pore width (nm)	Pore volumes (cm ³ g ⁻¹)	
	Mo-MOF	258.24	1.62	1.61	0.12	
	Mixed valence state UV Mo-MOF	203.65	1.68	1.69	0.13	

References

- 70 1. P. Martían-Zarza, J. M. Arrieta, M. C. Muñoz-Roca and P. Gili, J. Chem. Soc., Dalton Trans, 1993,
- 71 1551-1557..
- 69