Supporting information for:

Significant Role of Thorny Surface Morphology of Polyaniline on Adsorption of Triiodide Ions towards Counter Electrode in Dye-Sensitized Solar Cells

Muhammad Reza^a, Annisa Nurul Utami^a, Auliya Nur Amalina^a, Didi Prasetyo Benu^{a,b} Alvian Ikhsanul Fatya^a, Mohammad Kemal Agusta^{c,d}, Brian Yuliarto^{c,d}, Yusuf Valentino Kaneti^{e*}, Yusuke Ide^f, Yusuke Yamauchi^{ef}, and Veinardi Suendo^{a,d,*}

^a Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences,
 Institut Teknologi Bandung, Indonesia, Jl. Ganesha No. 10, Bandung 40132, Indonesia
 ^b Department of Chemistry, Universitas Timor, Jl. Eltari, Kefamenanu, 85613, Indonesia

^c Department of Engineering Physics, Faculty of Industrial Engineering, Institut Teknologi Bandung, Bandung, Indonesia

^d Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

^e School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.

^fJST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan.

Additional Figures

Fig. S1. UV-vis spectra of the redox pair electrolyte used in this study. Triiodide ion (I_3) has two strong absorption bands at 289 and 366 nm.

Fig. S2. An example of the fitted UV-vis spectra using the Gaussian function to obtain the corresponding absorption band area.

Fig. S3. SEM image of NPES at 10000× magnification (a) and the high-magnification SEM image of NPES at 50000× (b).

Fig. S4. The simulated dual-site Langmuir–Freundlich adsorption isotherms with various combinations of heterogeneity factors, where n_1 is the heterogeneity factor of type 1 site, while n_2 is the heterogeneity factor of type 2 site. Case 1: $k_{DSLF1} \ll k_{DSLF2}$.

Fig. S5. The simulated dual-site Langmuir–Freundlich adsorption isotherms with various combinations of heterogeneity factors, where n_1 is the heterogeneity factor of type 1 site, while n_2 is the heterogeneity factor of type 2 site. Case 2: $k_{DSLF1} \sim k_{DSLF2}$.

Fig. S6. The simulated dual-site Langmuir–Freundlich adsorption isotherms with various combinations of heterogeneity factors, where n_1 is the heterogeneity factor of type 1 site, while n_2 is the heterogeneity factor of type 2 site. Case 3: $k_{DSLF1} >>> k_{DSLF2}$.

Additional table

CE	Parameters							
	$R_{ m s}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$	CPE 1 (F $s^{\alpha-1}$)	α1	$R_{ m w}\left(\Omega ight)$	CPE 2 (F $s^{\alpha-1}$)	α2	Error (%)
PANI ES	0.25	44.50	4×10^{-6}	1	28.00	0.0044	0.75	< 1.0
NPES	0.30	27.05	9×10^{-6}	1	45.00	0.0049	0.60	< 1.5

Table S1. Parameters determined from EIS spectra of the fabricated DSSCs