Mononuclear Copper (I) Complexes of Triphenylphosphine and *N*, *N'*-Disubstituted Thioureas as Potential DNA Binding Chemotherapeutics

Syed Ishtiaq Khan^{*1,3}, Sajjad Ahmad², Inayat Ali Khan², Amin Badshah^{1*}, Muhammad Khawar Rauf¹, Jahangir Ali Putejo¹, Muhammad Nasir Siddiq³, Ataf Ali Altaf ⁴ and Samia Kausar ⁵

Supplemental Data

FTIR Vibrations	Wavenumbers/cm ⁻¹	
	Ligands	
v(N-H) _{str}	3120-3382 cm ⁻¹	
v(C-H) _{aromatic} str	2950-3100cm ⁻¹	
v(C-S) _{str}	1150-1190 cm ⁻¹	
v(C-N) _{str}	1550-1630 cm ⁻¹	
v(C=S) _{str}	1250-1275 cm ⁻¹	
Complexes		
v(N-H) _{str}	3150-3350 cm ⁻¹	
v(C-H) _{aromatic} str	2910-3050cm ⁻¹	
v(C=O) _{str}	1660-1685 cm ⁻¹	
v(C=C) _{str}	1475-1600 cm ⁻¹	
v(C-P) _{str}	1433-1477 cm ⁻¹	
v(C-F) _{str}	1320-1327 cm ⁻¹	
v(C-O) _{str}	1146 cm ⁻¹	
v(C-N) _{str}	1035-1090 cm ⁻¹	
v(C-Cl) _{str}	690-695 cm ⁻¹	
v(Cu-S) _{str}	320-337 cm ⁻¹	
v(Cu-X) _{str}	263-297 cm ⁻¹	
v(C=S) _{str}	1220-1270 cm ⁻¹	

Table S1. FTIR Vibration of Thiourea Ligands [38] and Complexes (1-9)

Figure S1 (a). UV-Vis Absorption Spectra of Complex 2; in absence of DNA (a) and presence of increasing concentration of DNA (b-f) [10-50µM from b-f respectively]

Figure S1 (b). Straight line Graph to Determine Binding Constant (K)

Figure S2 (a). UV-Vis Absorption Spectra of Complex 3; in absence of DNA (a) and presence of increasing concentration of DNA (b-f) [10-50µM from b-f respectively]

Figure S2 (b). Straight line Graph to Determine Binding Constant (K)

Figure S3 (a). UV-Vis Absorption Spectra of Complex 4; in absence of DNA (a) and presence of increasing concentration of DNA (b-f) [10-50µM from b-f respectively]

Figure S3 (b). Straight line Graph to Determine Binding Constant (K)

Figure S4 (a). UV-Vis Absorption Spectra of Complex 2; in absence of DNA (a) and presence of increasing concentration of DNA (b-f) [10-50µM from b-f respectively]

Figure S4 (b). Straight line Graph to Determine Binding Constant (K)

Figure S5 (a). UV-Vis Absorption Spectra of Complex 2; in absence of DNA (a) and presence of increasing concentration of DNA (b-f) [10-50µM from b-f respectively]

Figure S5 (b). Straight line Graph to Determine Binding Constant (K)

Figure S6. UV Spectrum of Complex 1 just after solution preparation and after keeping 7 days