Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry-Supporting information

Ratiometric fluorescent determination of palladium based on the C-N bond cleavage of allyl quaternary ammonium

Zhize Ou, Liu He, Yunyan Gao*, Pingyi Li, Tianzhu Li, Jing Zhang, Yitao Dong, Weijuan Zhou, Yiqing Zhang

Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China *Corresponding Author: gaoyunyan@nwpu.edu.cn

Fig. S1 ¹H NMR spectrum of PPI in CDCl₃.

Fig. S2 ¹³C NMR spectrum of PPI in CDCl₃.

Fig. S3 ¹H NMR spectrum of AL-PPI in DMSO-*d*₆.

Fig. S4 ¹³C NMR spectrum of AL-PPI in DMSO-*d*₆.

Fig. S5 ESI-HRMS spectra of PPI.

Fig. S6 ESI-HRMS spectra of AL-PPI.

Fig. S7 (a) Fluorescence spectra of **AL-PPI** (10 μ M) in the presence of different concentrations of Pd(PPh₃)₄ in ethanol. (b) Fluorescence intensity ratio (I₄₁₀/I₅₂₀) as a function of Pd⁰ concentration.

Fig. S8 (a) Fluorescence spectra of **AL-PPI** (10 μ M) upon addition of Pd(PPh₃)₄ in CTAC (2 mM) aqueous solution ($\lambda_{ex} = 375$ nm). (b) The florescence intensity ratio (I₄₁₆/I₅₀₂) versus concentration of Pd(PPh₃)₄.

Fig. S9 Time course of emission intensity ratio of **AL-PPI** (10 μ M) after addition of Pd(PPh₃)₄ (10 μ M) in (a) ethanol and (b) in PBS (10 mM, pH 7.4) containing CTAC (2 mM).

Fig. S10 The changes of absorption spectra of AL-PPI (10 μ M) upon addition of Pd(PPh₃)₄ in CTAC aqueous solution.

Fig. S11 Fluorescence spectral changes of AL-PPI (10 μ M) upon addition of Pd²⁺ (0-80 μ M) in CTAC aqueous solution ($\lambda_{ex} = 375$ nm).

Fig. S12 (a) Fluorescence spectra of **AL-PPI** (10 μ M) in the presence of (a) TFP (75 μ M) and (b) PPh₃ (75 μ M) in PBS buffer (10 mM, pH 7.4) containing Pd²⁺ (10 μ M) and CTAC (2 mM). Inset: time-dependent fluorescence response of **AL-PPI** toward Pd²⁺ in the presence of phosphine ligand.

Fig. S13 Mechanism for selective recognition of Pd²⁺ by AL-PPI with the aid of TFP.

Fig. S14 Fluorescence spectra of a mixed solution of **AL-PPI** (10 μ M), TFP (75 μ M) upon addition of Pd²⁺ (10 μ M) and other metal ions, including Mg²⁺, Ca²⁺, Hg²⁺, Fe²⁺, Fe³⁺, Ni²⁺, Cu²⁺, Zn²⁺, Ag⁺, Sn²⁺, Al³⁺, Cd²⁺, Co²⁺, Cr³⁺, Pb²⁺ and Pt²⁺ (20 μ M, respectively) (λ_{ex} = 375 nm). All spectra were recorded at 15 min after mixing of **AL-PPI** and analyte in PBS (10 mM, pH 7.4) containing CTAC (2 mM) (λ_{ex} = 375 nm).

Fig. S15 Fluorescence emission spectra of of **AL-PPI** (10 μ M) upon addition of in NaOAc-HOAc buffer solution (10 mM, pH = 5.0) containing CTAC (2 mM). Inset: time-dependent fluorescence change of **AL-PPI** (10 μ M) in the presence of TFP (75 μ M) and Pd²⁺ (10 μ M).

Fig. S16 The linear relationship of the I_{416}/I_{502} as a function of the concentration of Pd(PPh₃)₄ (0-5 μ M) in the Qizhen Lake water containing AL-PPI (10 μ M) and CTAC (2 mM).

AL-PPI	Added (µM)	Found (µM)	RSD (%)	Recovery (%)
1	0.5	0.453	0.25	90.6
2	1.0	1.257	2.67	125.7
3	3.0	3.041	5.37	101.3
4	5.0	5.399	1.37	108.4

Table S1 Analysis results of Pd^0 in real water samples $(n = 4)^{a,b}$

^alake water from Qizhen Lake, Northwestern Polytechnical University. ^bPd(PPh₃)₄ is used as source of Pd⁰.