Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Etch-Doping Strategy: Cobalt-Iron Bimetallic Phosphide as a Bifunction Electrocatalyst for Highly Efficient Water Splitting

Yuanyuan Wang, Shanshan Wang, Xiaogang Chen, Xuan Zhao, Shulong Chang, Fengmei Guo, Jie Xu, Yuanyuan Shang and Yingjiu Zhang*

Key Laboratory of Material Physics, Ministry of Education, School of Physics and

Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China

Fig. S1 (a) High and (b) low resolution SEM images of bare NF.

Fig. S2 Physical map of each product during the experiment

Fig. S3 (a) Low and (b) high resolution SEM images of Co(OH)_x/NF. (a) Low and (b) high resolution SEM images of CoFe(OH)_x/NF.

Fig. S4 (a) Electrocatalytic efficiency of H_2 production over $Co_1Fe_{0.1}P/NF$ at a current density of 20 mA cm⁻². (b) Electrocatalytic efficiency of O_2 production over $Co_1Fe_{0.1}P/NF$ at a current density of 20 mA cm⁻².

Fig. S5 H_2 and O_2 production over $Co_1Fe_{0.1}P/NF$ at a current density of 20 mA cm⁻².

Fig. S6 SEM images of $Co_1Fe_{0.1}P/NF$ catalyst after 24 h OER test.

Fig. S7 TEM images of $Co_1Fe_{0.1}P/NF$ catalyst after 24 h OER test.

Fig. S8 Mapping images of $Co_1Fe_{0.1}P/NF$ catalyst after 24 h OER test.

Fig. S9 (a) XPS survey spectrum of Co₁Fe_{0.1}P/NF nanowires after 24 h OER test; The XPS spectra of (b) Co 2p, (c) Fe 2p, and (d) P 2p in the Co₁Fe_{0.1}P/NF.

Fig. S10 XRD patterns of Co₁Fe_{0.1}P/NF after 24 h OER test.

Table S1 Related parameters of nickel foam.

	thickness	Specific surface area	Porosity
NF	1.0 mm	320 g/m ² ±20	95%-98%

Table S2 Load capacity of different batches of the same sample.

	Quality (mg)	average value (mg)	
NF	95.1/89.7/90.7	91.83	
Co ₁ Fe _{0.1} P/NF	105.2/100.0/99.0	100.14	
Sample load	10.1/10.3/8.3	9.57	

Table S3 Inductively coupled plasma of 1M KOH after OER test.

Metal ions	Р		
Content (mg/L)	0.70		

Catalyst	Electrolyte	Overpotential @J ₁₀ /mV for HER	Overpotential @ J ₁₀ /mV for OER	Overpotential @J ₁₀ /V for overall water splitting	Reference
CoFeP@Ru	1M KOH	94	270	1.60	[1]
Ni ₂ P/Cu ₃ P	1M KOH	88	262	1.60	[2]
A-NiSe ₂ P	1М КОН	111	272	1.62	[3]
P-Fe ₃ N@NC	1M KOH	102	270	1.61	[4]
MnCo ₂ O ₄ @Ni ₂ P	1М КОН	57	240	1.63	[5]
Ni ₂ P@rGO	1М КОН	142	260	1.61	[6]
$\begin{array}{c} CoP@3D\\ Ti_{3}C_{2} -MXene \end{array}$	1М КОН	168	280	1.58	[7]
Co _{0.6} Fe _{0.4} P NPs	1M KOH	133	298	1.57	[8]
CoS _{0.46} P _{0.54}	1М КОН	101	302	1.62	[9]
Co ₁ Fe _{0.1} P/NF	1M KOH	73	257	1.60	This work

Table S4 Summary of TMP-based electrocatalysts for HER, OER and overall water splitting in 1 M KOH.