Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary material

1. Vasodilation Activity Screening (page 3)

Table titles:

 Table S1. Dose response curves the tested compounds

Table S2. Descriptor values for the test set compounds presented in the 2D-QSAR model.

Table S3. Descriptor values for the training set compounds of the 2D-QSAR model.

Figure captions:

Figure S1. 3D-pharmacophore model mapped on the tested compounds 3a-v.

Figure S2. ¹H-NMR spectrum of compound 3a.

Figure S3. ¹³C-NMR spectrum of compound 3a.

Figure S4. Mass spectrum of compound 3a.

Figure S5. ¹H NMR spectrum of compound 3b.

Figure S6. ¹³C NMR spectrum of compound 3b.

Figure S7. Mass spectrum of compound 3b.

Figure S8. ¹H NMR spectrum of compound 3c.

Figure S9. ¹³C NMR spectrum of compound 3c.

Figure S10. Mass spectrum of compound 3c.

Figure S11. ¹H NMR spectrum of compound 3d.

Figure S12. ¹³C NMR spectrum of compound 3d.

Figure S13. Mass spectrum of compound 3d.

Figure S14. ¹H NMR spectrum of compound 3e.

Figure S15. Mass spectrum of compound 3e.

Figure S16. ¹H NMR spectrum of compound 3f.

Figure S17. Mass spectrum of compound 3f.

Figure S18. ¹H NMR spectrum of compound 3g.

Figure S19. ¹³C NMR spectrum of compound 3g.

Figure S20. Mass spectrum of compound 3g.

Figure S21. ¹H NMR spectrum of compound 3h.

Figure S22. ¹³C NMR spectrum of compound **3h**.

Figure S23. Mass spectrum of compound 3h.

Figure S24. ¹H NMR spectrum of compound 3i.

Figure S25. ¹³C NMR spectrum of compound 3i.

Figure S26. Mass spectrum of compound 3i.

Figure S27. ¹H NMR spectrum of compound 3j.

Figure S28. ¹³C NMR spectrum of compound 3j.

Figure S29. Mass spectrum of compound 3j.

Figure S30. ¹H NMR spectrum of compound 3k.

Figure S31. ¹³C NMR spectrum of compound 3k. Figure S32. Mass spectrum of compound 3k. Figure S33. ¹H NMR spectrum of compound 3I. Figure S34. ¹³C NMR spectrum of compound 3I. Figure S35. Mass spectrum of compound 31. Figure S36. ¹H NMR spectrum of compound 3m. Figure S37. ¹³C NMR spectrum of compound 3m. Figure S38. Mass spectrum of compound 3m. Figure S39. ¹H NMR spectrum of compound 3n. Figure S40. ¹³C NMR spectrum of compound 3n. Figure S41. Mass spectrum of compound 3n. Figure S42. ¹H NMR spectrum of compound 30. Figure S43. ¹³C NMR spectrum of compound 30. Figure S44. Mass spectrum of compound 30. Figure S45. ¹H NMR spectrum of compound 3p. Figure S46. ¹³C NMR spectrum of compound **3**p. Figure S47. Mass spectrum of compound 3p. Figure S48. ¹H NMR spectrum of compound 3q. Figure S49. ¹³C NMR spectrum of compound 3q. Figure S50. Mass spectrum of compound 3q. Figure S51. ¹H NMR spectrum of compound 3r. Figure S52. ¹³C NMR spectrum of compound 3r. Figure S53. Mass spectrum of compound 3r. Figure S54. ¹H NMR spectrum of compound 3s. Figure S55. ¹³C NMR spectrum of compound 3s. Figure S56. Mass spectrum of compound 3s. Figure S57. ¹H NMR spectrum of compound 3t. Figure S58. ¹³C NMR spectrum of compound 3t. Figure S59. Mass spectrum of compound 3t. Figure S60. ¹H NMR spectrum of compound 3u. Figure S61. ¹³C NMR spectrum of compound 3u. Figure S62. Mass spectrum of compound 3u. Figure S63. ¹H NMR spectrum of compound 3v. Figure S64. ¹³C NMR spectrum of compound 3v Figure S65. Mass spectrum of compound 3v.

1. Vasodilation Activity Screening

The vasodilation activity screening was undertaken by Pharmacology Department, National Research Centre, Egypt, according to the standard in vitro bioassay technique [1, 2] by testing the effects of the synthesized agents **3a-v** and compared with prazosin hydrochloride (α_1 -AR antagonist) on isolated thoracic aortic rings of male Wistar rats (200–250 g) pre-contracted with norepinephrine hydrochloride. After light ether anesthesia, the rats were sacrificed by cervical dislocation. The aortae were immediately excised, freed of extraneous tissues, and prepared for isometric tension recording. Aorta was cut into (3-5 mm width) rings and each ring was placed in a vertical chamber "10 ml 5 jacketed automatic multi-chamber organ bath system (Model no. ML870B6/C, Panlab, Spain)" filled with Krebs solution composed of (in mM): NaCl, 118.0; KCl, 4.7; NaHCO₃, 25.0; CaCl₂, 1.8; NaH₂PO₄, 1.2; MgSO₄, 1.2; glucose, 11.0 and oxygenated with carbogen gas (95% $O_2/5\%$ CO₂) at 37 ± 0.5 °C. Each aortic ring was mounted between two stainless steel hooks passed through its lumen. The lower hook was fixed between two plates, while the upper one was attached to a force displacement transducer (Model no. MLT0201, Panlab, Spain) connected to an amplifier (PowerLab, AD Instruments Pty. Ltd.), which was connected to a computer. The Chart for windows (v 3.4) software was used to record and elaborate data. Preparations were stabilized under 2 g resting tension during 2 h, and then the contracture response to norepinephrine hydrochloride (10^{-6} M) was measured before and after exposure to increasing concentrations of the tested synthesized compounds $(50, 100, 150, 200, 250, 300, 350, 400, 450 \text{ and } 500 \ \mu\text{M})$. The tested compounds were dissolved in dimethylsulfoxide (DMSO) as stock solution (10 ml of 0.005 M). Control experiments were performed in the presence of DMSO alone, at the same concentrations as those used with the derivatives tested, which demonstrated that the solvent did not affect the contractile response of isolated aorta. The observed vasodilation activity screening data for the synthesized compounds **3a-v** and prazosin hydrochloride are expressed as IC_{50} (μM) concentration necessary for 50% reduction of maximal norepinephrine hydrochloride induced contracture utilizing four different replicates. The standard deviation ±SD was calculated by SPSS-16.

Entry	Compd.	D_1	<i>D</i> ₂	<i>D</i> ₃	D_4
1	3k	66.044	22445.4	2.1229	0.2
2	3r	65.9747	26751.7	2.0958	0.12766

Table S2. Descriptor values for the test set compounds presented in the 2D-QSAR model.

 D_1 = Min. e-n attraction for bond H-C; D_2 = (1/6)X GAMMA polarizability (DIP); D_3 = Max. bonding contribution of one MO; D_3 = Relative number of double bonds.

Entry	Compd.	D_1	D_2	D ₃	D_4
1	3a	66.0758	20365.2	2.1136	0.13158
2	3b	67.1792	18536	2.0439	0.14286
3	3c	66.0375	19204.3	2.0547	0.14286
4	3d	67.086	16035.6	2.0221	0.14286
5	3e	65.9986	17108.5	2.1324	0.14286
6	3f	66.9087	18526.4	2.0224	0.14286
7	3g	66.045	19210	2.0754	0.12821
8	3h	66.8966	16714.5	2.0767	0.12821
9	3i	66.1015	18964.7	2.1307	0.11628
10	3ј	67.1195	18322.7	2.0076	0.11628
11	31	67.1802	23410.2	2.0066	0.2
12	3m	65.9366	23006.2	2.1408	0.15
13	3n	65.944	20737.5	2.1076	0.15
14	30	66.474	26095.8	2.0839	0.13636
15	3p	66.1563	21913.8	2.0955	0.13953
16	3q	65.9516	23030.5	2.0877	0.13953
17	3s	65.9536	25348.6	2.1397	0.13043
18	3t	65.9763	23867	2.0729	0.13043
19	3 u	66.0608	25428.7	2.1421	0.11905
20	3v	66.9048	26261.6	2.1267	0.11905

Table S3. Descriptor values for the training set compounds of the 2D-QSAR model.

 D_1 = Min. e-n attraction for bond H-C; D_2 = (1/6)X GAMMA polarizability (DIP); D_3 = Max. bonding contribution of one MO; D_3 = Relative number of double bonds.

Fig. S1. 3D-pharmacophore model mapped on the tested compounds 3a-v.

Figure S2. ¹H NMR spectrum of compound 3a.

Figure S3. ¹³C NMR spectrum of compound 3a.

Figure S4. Mass spectrum of compound 3a.

Figure S5. ¹H NMR spectrum of compound 3b.

Figure S6. ¹³C NMR spectrum of compound 3b.

Figure S7. Mass spectrum of compound 3b.

Figure S8. ¹H NMR spectrum of compound 3c.

Figure S9. ¹³C NMR spectrum of compound 3c.

Figure S10. Mass spectrum of compound 3c.

Figure S11. ¹H NMR spectrum of compound 3d.

Figure S12. ¹³C NMR spectrum of compound 3d.

Figure S13. Mass spectrum of compound 3d.

Figure S14. ¹H NMR spectrum of compound 3e.

Figure S15. Mass spectrum of compound 3e.

Figure S16. ¹H NMR spectrum of compound 3f.

Figure S17. Mass spectrum of compound 3f.

Dr-Alaa-Alden-Seror-12F_PROTON_01 Dr-Alaa-Alden-Seror-12F

Figure S18. ¹H NMR spectrum of compound 3g.

Figure S19. ¹³C NMR spectrum of compound 3g.

Figure S20. Mass spectrum of compound 3g.

Figure S21. ¹H NMR spectrum of compound 3h.

Figure S22. ¹³C NMR spectrum of compound **3h**.

Figure S23. Mass spectrum of compound 3h.

Dr-Alaa-Alden-Seror-13F_PROTON_01 Dr-Alaa-Alden-Seror-13F

Figure S24. ¹H NMR spectrum of compound 3i.

Figure S25. ¹³C NMR spectrum of compound 3i.

Figure S26. Mass spectrum of compound 3i.

Figure S27. ¹H NMR spectrum of compound 3j.

Figure S28. ¹³C NMR spectrum of compound 3j.

Figure S29. Mass spectrum of compound 3j.

Dr-Alaa-Alden-Seror-14F_PROTON_01 Dr-Alaa-Alden-Seror-14F

Figure S30. ¹H NMR spectrum of compound 3k.

Figure S31. ¹³C NMR spectrum of compound 3k.

Figure S32. Mass spectrum of compound 3k.

Figure S33. ¹H NMR spectrum of compound 3I.

Figure S34. ¹³C NMR spectrum of compound 3I.

Figure S35. Mass spectrum of compound 31.

Figure S36. ¹H NMR spectrum of compound 3m.

Figure S37. ¹³C NMR spectrum of compound 3m.

Figure S38. Mass spectrum of compound 3m.

Figure S39. ¹H NMR spectrum of compound 3n.

Figure S40. ¹³C NMR spectrum of compound 3n.

Figure S41. Mass spectrum of compound 3n.

Figure S42. ¹H NMR spectrum of compound 30.

Figure S43. ¹³C NMR spectrum of compound 30.

Figure S44. Mass spectrum of compound 30.

Figure S45. ¹H NMR spectrum of compound 3p.

Figure S46. ¹³C NMR spectrum of compound **3**p.

Figure S47. Mass spectrum of compound 3p.

Figure S48. ¹H NMR spectrum of compound 3q.

Figure S49. ¹³C NMR spectrum of compound 3q.

Figure S50. Mass spectrum of compound 3q.

Figure S51. ¹H NMR spectrum of compound 3r.

Figure S52. ¹³C NMR spectrum of compound 3r.

Figure S53. Mass spectrum of compound 3r.

Dr-Alaa-Alden-Seror-7F_PROTON_01 Dr-Alaa-Alden-Seror-7F

Figure S54. ¹H NMR spectrum of compound 3s.

Figure S55. ¹³C NMR spectrum of compound 3s.

11/29/2018 8:58:24 AM

Figure S56. Mass spectrum of compound 3s.

Figure S57. ¹H NMR spectrum of compound 3t.

Figure S58. ¹³C NMR spectrum of compound 3t.

Figure S59. Mass spectrum of compound 3t.

Figure S60. ¹H NMR spectrum of compound 3u.

Dr_Zineb_Nofal_8F_CARBON_01 Dr_Zineb_Nofal_8F

Figure S61. ¹³C NMR spectrum of compound 3u.

Figure S62. Mass spectrum of compound 3u.

Figure S63. ¹H NMR spectrum of compound 3v.

Figure S64. ¹³C NMR spectrum of compound 3v.

Figure S65. Mass spectrum of compound 3v.

- M.N. Aziz, S.S. Panda, E.M. Shalaby, N.G. Fawzy, A.S. Girgis, Facile synthetic approach towards vasorelaxant active 4-hydroxyquinazoline-4-carboxamides, *RSC Adv.*, 9 (2019) 28534-28540.
- [2] N.M. Khalifa, A.M. Srour, S.S. AbdEl-Karim, D.O. Saleh, M. A. Al-Omar, Synthesis and 2D-QSAR study of active benzofuran-based vasodilators, *Molecules*, 22 (2017) 1820.