Supplementary Information for

Assembling of Bi Atoms on TiO₂ Nanorods Boosts Photoelectrochemical Water Splitting of Semiconductor

Yajun Pang^{a, b,⊥}, Wenjie Zang^{b,⊥}, Zongkui Kou^{b, *}, Lei Zhang^b, Guangqing Xu^{a, c, *}, Jun Lv^{a, c}, Xiaorui Gao^b, Zhenghui Pan^b, John Wang^{b, *}, Yucheng Wu^{a, c}

^a School of Materials Science and Engineering, and Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China.

^b Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.

^c China International S&T Cooperation Base for Advanced Energy and Environmental Materials, Hefei 230009, China

*Corresponding authors

E-mail: msekz@nus.edu.sg (Z. Kou); gqxu1979@hfut.edu.cn (G. Xu); msewangj@nus.edu.sg (J. Wang).

 $^{\perp}$ These authors contributed equally to this work.

Figure S1. Schematic showing the formation of pure TiO₂ and atom-dispersed Bi on TiO₂ nanorods.

Figure S2. Optical photos of TiO₂, 1-Bi/TiO₂, and 10-Bi/TiO₂.

Figure S3. Additional SEM images as-prepared (a) TiO₂, (b) 0.5-Bi/TiO₂, (c) 5-Bi/TiO₂, and (d) 10-Bi/TiO₂, respectively.

Figure S4. (a) TEM image and corresponding elemental mappings of Ti, and O in Bi/TiO₂ nanorods; (b-d) additional HR-TEM images of Bi/TiO₂ sample.

Figure S5. Schematic diagram and HR-TEM images of pristine TiO_2 for understanding gradient distribution for Bi/TiO₂.

Figure S6. Size distribution of Bi atoms and cluster on Bi/TiO_2 NRs.

Figure S7. Broad scan XPS patterns of TiO₂ and 1-Bi-TiO₂.

Figure S8. Linear sweep voltammogram (LSV) measurements of $1-Bi/TiO_2$ NRs electrode in buffer solution without and with 0.3 M H₂O₂.

Photoanode material	Current intensity	Reference
TiO ₂ nanorod@nanobowl arrays	1.24 mA cm ⁻²	[1]
	at 1.23 V_{RHE}	
Au/TiO ₂ NR photonic crystals	1.65 mA cm ⁻²	[2]
	at 1.23 V_{RHE}	
TiO ₂ /BTO core/shell nanowire	1.30 mA cm ⁻²	[3]
	at 1.23 V_{RHE}	
TiO ₂ /CdS/Co-Pi nanowire array	0.78 mA cm ⁻²	[4]
	at 0 $V_{Ag/AgCl}$	
TiO ₂ -STO core-shell nanowire	1.43 mA cm ⁻²	[5]
	at 1.23 V_{RHE}	
A-V-Si: TiO ₂ nanorod	0.83 mA cm ⁻²	[6]
	at 1.23 V_{RHE}	
C/N-TiO ₂	$\sim 1 \text{ mA cm}^{-2}$	[7]
	at 1.23 V_{RHE}	
TiO_2 ($a_2O_xN_y$	1.32 mA cm ⁻²	[8]
	at 1.23 V_{RHE}	
NH ₂ -MIL-125(Ti)/TiO ₂ nanorod	1.63 mA cm ⁻²	[9]
	at 1.23 V_{RHE}	
BiFeO ₃ /Sn:TiO ₂ nanorod	$\sim 1.5 \text{ mA cm}^{-2}$	[10]
	at 1.23 V_{RHE}	
TNCuPc/TiO ₂	~1.10 mA cm ⁻²	[11]
	at 1.23 V_{RHE}	
Bi/TiO ₂ nanorod	1.65 mA cm ⁻²	This work
	at 1.23 V _{RHE}	

Table S1. A comparison study between this work and previously reported active TiO_2 NRsbased photoanodes toward PEC water splitting.

References

- [1] W. Wang, J. Dong, X. Ye, Y. Li, Y. Ma and L. Qi, Small 2016, 12, 1469.
- [2] X. Zhang, Y. Liu, S. T. Lee, S. Yang and Z. Kang, Energy Environ. Sci. 2014, 7, 1409.
- [3] W. Yang, Y. Yu, M. B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao and X. Wang, *Nano Lett.* 2015, 15, 7574.
- [4] G. Ai, H. Li, S. Liu, R. Mo and J. Zhong, Adv. Funct. Mater. 2015, 25, 5706.
- [5] F. Wu, Y. Yu, H. Yang, L. N. German, Z. Li, J. Chen, W. Yang, L. Huang, W. Shi, L. Wang and X. Wang, *Adv. Mater.* 2017, **29**, 1701432.
- [6] C. Chen, Y. Wei, G. Yuan, Q. Liu, R. Lu, X. Huang, Y. Cao and P. Zhu, *Adv. Funct. Mater.* 2017, 27, 1701575.
- [7] X. Song, W. Li, D. He, H. Wu, Z. Ke, C. Jiang, G. Wang and X. Xiao, *Adv. Energy Mater*.
 2018, 8, 1800165.
- [8] H. Zhang, L. Ma, J. Ming, B. Liu, Y. Zhao, Y. Hou, Z. Ding, C. Xu, Z. Zhang and J. Long, *Appl. Catal.*, B 2019, 243, 481.
- [9] J. Yoon, D. Kim, J. Kim, H. Jangand J. Lee, Appl. Catal., B 2019, 244, 511.
- [10] J. Huang, Y. Wang, X. Liu, Y. Li, X. Hu, B. He, Z. Shu, Z. Li and Y. Zhao, *Nano Energy* 2019, **59**, 33.
- [11] X. Li, T. Zhang, Y. Chen, Y. Fu, J. Su and L. Guo, Chem. Eng. J. 2020, 382, 122783.