Supporting Information

Tuning the Electronic Structure of Transition Metal Embedded in Nitrogen-doped Graphene for Electrocatalytic Nitrogen Reduction: A first-principles Study

Xiaonan Zheng, Yuan Yao, Ya Wang, Yang Liu*

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, PR China.

* Corresponding Author: <u>vang.liu@hit.edu.cn</u>; ORCID: 0000-0001-6475-8943

Fig.S1 Top-view and side-view of charge density differences for (a) Fe/Fe-N-C, (a) Fe/Co-N-C, (a) Fe/Ni-N-C, (a) Fe/Cu-N-C, (a) Fe/Zn-N-C and (a) Fe/Mo-N-C. The isosurface is set to be 0.03 e Å⁻³. Cyan and yellow represents positive and negative region, respectively.

Fig.S2 The optimized configurations of the intermediates of each step for NRR catalyzed by Fe/M-N-C (M=Mn, Fe, Cu, Zn) starting with Fe-end adsorption configuration.

Fig.S3 Gibbs free energy diagrams for NRR along (a) alternating pathway on Fe-Mn-N-C in Fe-Mn-end configuration, distal (b) and (c) alternating on Fe/Mn-N-C in Fe-end configuration, alternating pathway on (d) Fe/Fe-N-C, (e) Fe/Cu-N-C and (f) Fe/Zn-N-C, respectively. The blue and red line represents the free energy for NRR at zero and applied potential (limiting potential).

Fig.S4 Charge difference density of N_2 adsorbed on (a) Fe-N-C and (b) Fe/Cu-N-C catalysts. The positive and negative charges are shown in yellow and cyan, respectively.

Table S1 Calculated total energy (E_{DFT}), ZPE, TS for N_2 , H_2 and NH_3 (T = 298.15 K, P = 1 bar). In comparison, the experimental entropies (TS_{exp}) of the gas phase N_2 , H_2 and NH_3 are also listed, which are from NIST standard reference database (https://doi.org/10.18434/T4D303).

Species	E _{DFT} /eV	E _{ZPE} /eV	TS/eV	TS _{exp} /eV
N ₂	-16.65	0.15	0.59	0.59
H ₂	-6.77	0.27	0.40	0.41
NH ₃	-19.56	0.91	0.59	0.60

Table S2 Calculated zero point energies (E_{ZPE}) and entropy of different adsorption species, where the * denotes the adsorption site. Therefore, *N-*N and *N-N represent the side-on and end-on adsorption configurations, respectively. The "Fe/M" represents corresponding Fe/M-N-C catalysts.

	E_{ZPE}/eV						TS/eV					
Adsorption species	Fe/Mn	Fe/Mn	Fe/Fe	Fe/Cu	Fe/Zn	Fe/Mo	Fe/Mn	Fe/Mn	Fe/Fe	Fe/Cu	Fe/Zn	Fe/Mo
	(Fe-Mn-end)	(Fe-					(Fe-Mn-	(Fe-				
		end)					end)	end)				
*N-N(*N-*N)	0.22	0.22	0.20	0.20	0.21	0.18	0.12	0.14	0.13	0.16	0.15	0.11
*N-NH(*N-NH)	0.51	0.48	0.51	0.48	0.49	0.47	0.12	0.17	0.13	0.17	0.15	0.12
*N-NH ₂ (*N-*NH ₂)	0.80	0.80	0.83	0.80	0.81	0.86	0.16	0.16	0.15	0.19	0.15	0.11
*NH-NH(*NH-*NH)	0.83	0.80	0.82	0.83	0.81	0.82	0.12	0.13	0.14	0.18	0.13	0.12
*NH-NH ₂ (*NH-*NH ₂)	1.15	1.17	1.17	1.13	1.14	1.16	0.16	0.14	0.15	0.20	0.17	0.13
*NH ₂ -NH ₂ (*NH ₂ -*NH ₂)	1.47	1.48	1.49	1.49	1.49	1.48	0.22	0.22	0.18	0.25	0.21	0.18
*N	0.09	0.09	0.09	0.08	0.08	0.09	0.04	0.04	0.03	0.06	0.06	0.04
*NH	0.37	0.37	0.37	0.36	0.37	0.37	0.05	0.05	0.05	0.06	0.05	0.06
*NH ₂	0.71	0.71	0.72	0.70	0.71	0.71	0.07	0.07	0.06	0.08	0.07	0.08
*NH ₃	1.00	1.00	1.01	1.01	1.02	1.02	0.22	0.22	0.19	0.13	0.16	0.13

Table S3 The distance of two metal atoms (d_{Fe-M} , Å), Fe atom and N atom (d_{Fe-N} , Å),M atom and N (d_{M-N} , Å) of Fe/M-N-C catalyst.

Catalyst	d _{Fe-M} / Å	d _{Fe-N} / Å	d _{M-N} / Å
Fe/Mn-N-C	2.25	1.87	1.93
		1.95	1.96
		1.98	2.06
Fe/Fe-N-C	2.22	1.91	1.91
		1.91	1.91
		2.02	2.02
Fe/Co-N-C	2.18	1.90	1.89
		1.92	1.90
		2.06	2.00
Fe/Ni-N-C	2.30	1.90	1.88
		1.92	1.90
		2.01	1.95
Fe/Cu-N-C	2.38	1.94	1.91
		1.95	1.93
		2.00	1.96
Fe/Zn-N-C	2.50	1.93	1.93
		1.95	1.96
		1.96	1.97
Fe/Mo-N-C	2.04	1.90	2.03
		1.94	2.04
		2.04	2.24

Catalyst	E _b (eV)	Metal	E _c (eV/atom)
Fe/Mn-N-C	-10.58	Mn	-2.92
Fe/Fe-N-C	-11.68	Fe	-4.28
Fe/Co-N-C	-12.61	Со	-4.39
Fe/Ni-N-C	-12.52	Ni	-4.44
Fe/Cu-N-C	-10.23	Cu	-3.49
Fe/Zn-N-C	-6.88	Zn	-1.35
Fe/Mo-N-C	-12.05	Мо	-6.82

Table S4 Calculated binding energies (E_b) of Fe/M-N-C catalysts and experimental cohesive energies (E_c) of metals

a) Experimental values are taken from reference¹.

Table S5 Bader charge (q, in |e|) of the two metal atoms and N-C of Fe/M-N-C catalyst.

Catalyst	q(M)	q(Fe)	q(N-C)
Fe/Mn-N-C	0.99	0.72	-1.63
Fe/Fe-N-C	0.83	0.83	-1.59
Fe/Co-N-C	0.62	0.89	-1.43
Fe/Ni-N-C	0.57	0.96	-1.45
Fe/Cu-N-C	0.66	0.92	-1.50
Fe/Zn-N-C	0.99	0.87	-1.78
Fe/Mo-N-C	1.10	0.67	-1.69

Table S6 The ΔG value for each step of the Fe/M-N-C catalysts. The step corresponds to each reaction step in NRR of free energy diagrams. The ΔG_L was highlighted by red color.

		ΔG/eV										
	Fe/Mn-N-C				Fe/Fe-N-C		Fe/Cu-N-C		Fe/Zn-N-C		Fe/Mo-N-C	
Step	Fe	-Mn-end	I	Fe-end	Fe	-Fe-end	I	Fe-end	Fe-end		Fe-Mo-side	
	Distal	Alternating	Distal	Alternating	Distal	Alternating	Distal	Alternating	Distal	Alternating	Consecutive	Enzymatic
1	-0.54	-0.54	-0.87	-0.86	-0.01	-0.01	-0.54	-0.54	-0.46	-0.46	-0.19	-0.19
2	0.29	0.29	0.86	0.86	0.38	0.38	0.89	0.89	0.73	0.73	0.37	0.37
3	0.07	0.47	-0.18	0.28	0.31	0.64	0.35	0.35	0.20	0.19	-0.16	-0.28
4	-1.01	-0.32	-1.01	-0.22	-1.17	-0.59	-0.43	-0.19	-0.51	-0.18	-1.37	0.27
5	-0.42	0.52	-0.42	0.41	-0.27	0.29	-0.41	-0.10	-0.86	0.31	-0.35	0.10
6	-0.40	-2.44	-0.40	-2.49	-0.60	-2.08	-1.12	-1.68	-1.01	-2.51	-0.18	-2.16
7	0.37	0.37	0.37	0.37	0.03	0.03	-0.30	-0.30	0.55	0.55	0.19	0.19
8	0.53	0.53	0.47	0.47	0.21	0.21	0.46	0.46	0.24	0.24	0.56	0.56

Catalyst	ΔG _{max} (eV)	PDS	Ref.
Fe/Mn-N-C	0.37	$*NH_2+H^++e^- \rightarrow *NH_3$	This work
Mo@N ₁ C ₂	0.47	$*N_2+H^++e^- \rightarrow *N-NH$	2
Ru@N ₃ -G	0.73	$*N_2+H^++e^-\rightarrow *N-NH$	3
Ru@N ₄ -G	0.77	*N ₂ +H++e- \rightarrow *N-NH	3
Ru(101)	0.91	$*N_2+H^++e^-\rightarrow *N-NH$	3
Ru/B _a	0.42	$*N_2+H^++e^-\rightarrow *N-NH$	4
Ru/B_{β}	0.44	$*N_2+H^++e^-\rightarrow *N-NH$	4
Fe/Ti ₃ C ₂ O ₂	0.75	$*N_2+H^++e^-\rightarrow *N-NH$	5
Mn@MoP	0.95	$*N_2+H^++e^-\rightarrow *N-NH$	6
W@N-doped graphyne	0.38	$*N_2+H^++e^-\rightarrow *N-NH$	7
Fe-N ₃ -G	0.84	$*N_2+H^++e^-\rightarrow *N-NH$	8
FeOOH (110)	0.52	*N-NH+H++ $e^{-} \rightarrow *N-NH_2$	9
BP	0.56	*NH-NH ₂ +H ⁺ +e ⁻ \rightarrow *NH ₂ -	10
		NH ₂	
Ti@N ₄ -G	0.69	$*NH_2+H^++e^- \rightarrow *NH_3$	11
V@N ₄ -G	0.87	$*N_2+H^++e^-\rightarrow *N-NH$	11
Nb ₂ O ₅ (181)	0.56	*N-NH+H++ $e^- \rightarrow$ *NN-H ₂	12
CoO (200)	0.75	$*N_2+H^++e^- \rightarrow *N-NH$	13

Table S7 Comparison of the N_2 electrochemical reduction activity for Fe/Mn-N-C with other catalysts.

References

1 Kittel, C., Introduction to solid state physics. Wiley: 2005.

- 2 L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lü, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, H. L. Xin, *Angew. Chem. Int. Ed.*, 2019, **58**, 2321.
- 3 Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, *Adv. Mater.*, 2018, **30**, 1803498.
- 4 C. Liu, Q. Li, J. Zhang, Y. Jin, D. R. MacFarlane, C. Sun, J. Mate. Chem. A., 2019, 7, 4771.
- 5 Y. Gao, H. Zhuo, Y. Cao, X. Sun, G. Zhuang, S. Deng, X. Zhong, Z. Wei, J. Wang, *Chinese J. Catal.*, 2019, **40**, 152.
- 6 M. Han, G. Wang, H. Zhang, H. Zhao, Phys. Chem. Chem. Phys., 2019, 21, 5950.
- 7 T. He, S. K. Matta, A. Du, Phys. Chem. Chem. Phys., 2019, 21, 1546.
- 8 Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang, W. Zheng, ACS Catal., 2019, 9, 336.
- 9 X. Zhu, Z. Liu, Q. Liu, Y. Luo, X. Shi, A. M. Asiri, Y. Wu, X. Sun, *Chem Commun.*, 2018, 54, 11332.
- 10 L. Zhang, L.-X. Ding, G.-F. Chen, X. Yang, H. Wang, Angew. Chem. Int. Ed., 2019, 58, 2612.
- 11 C. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim, Y. Jung, ACS Catal., 2018, 8, 7517.
- 12 J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu, X. Sun, *Nano Energy*, 2018, **52**, 264.
- 13 K. Chu, Y.-p. Liu, Y.-b. Li, H. Zhang, Y. Tian, J. Mater. Chem. A., 2019, 7, 438