

Supporting Information

Fig. S1 Phonon dispersions of TM_2P monolayers along $\Gamma - X - M - \Gamma$ directions in Brillouin zone.

Fig. S2 The charge density for TM_2P monolayers on (a) (1 1 0) and (b) (0 1 0) face.

Fig. S3 (a) Total energy variations along with unit cell volume change for the *I*4/*mmm* and *P*-62*m* phase. (b)Phonon dispersions of *I*4/*mmm* Fe₂P along $\Gamma - X - M - \Gamma$ directions in Brillouin zone.

Fig. S4 Schematic representation of TM_2P grown on the surface of $CaCl_2$.

Fig. S5 The band structures of 2D (a) Fe_2P , (b) Co_2P , (c) Ni_2P , (d) Pd_2P and (e) Ru_2P . The purple and orange lines are spin-up and down bands. The Fermi level is set to zero.

Fig. S6 The uniaxial tensile stress-strain response of 2D TM₂P monolayers along [100] direction.

Fig. S7 (a) Charge density on $(1 \ 1 \ 0)$ face and (b) isosurface of electron localization function (ELF) on $(0 \ 0 \ 1)$ face of Co₂P under various tensile strains.

Fig. S8 The band structures of 2D (a) Fe₂P and (b) Co₂P, (c) Ni₂P, (d) Pd₂P and (e) Ru₂P under critical tensile strain, respectively. The Fermi level is set to zero.

Fig. S9 Schematic diagrams for Fe₂P and Co₂P monolayers in FM and various AFM magnetic configurations. The blue and pink balls represent TM (Fe, Co) and P atoms, respectively.

Fig. S10 The orbital project density of states of (a) Fe₂P, (b) Co₂P and (c) Ni₂P, respectively. The Fermi level is set zero.

Fig. S11 Energy difference between the FM and AFM phases for (a) Fe_2P and (b) Co_2P . The AFM phase region is below the red line.

Fig. S12 The orbital projected density of states for Co₂P and Fe₂P monolayers under tensile strains.

	Fe ₂ P	Co ₂ P	Ni ₂ P	Pd ₂ P	Ru ₂ P	Os ₂ P
E_{f} (eV/atom)	-0.32	-0.44	-0.53	-0.59	-0.15	0.36

Table S1. The corresponding formation energy per atom (E_f) of TM₂P monolayers.

	<i>C</i> ₁₁ (N/m	C_{12} (N/m)	<i>C</i> ₆₆ (N/m)	
)			
Fe ₂ P	119	59	30	
Co ₂ P	141	55	24	
Ni ₂ P	90	42	19	
Pd ₂ P	97	27	9	
Ru ₂ P	167	88	13	

Table S2. Elastic constants C_{11} , C_{12} , and C_{66} of 2D TM₂P systems.

Bond	Со-Р	Со-Со	Fe-P	Fe-Fe	Ni-P	Ni-Ni	Pd-P	Pd-Pd	Ru-P	Ru-Ru
Bond population	0.57	-0.71	0.69	-0.91	0.67	-0.89	0.57	-1.40	0.68	-0.87

Table S3. Mulliken bond population of 2D TM_2P monolayers from PBE calculations.

Table S4. The adsorption energy $\Delta E_{\rm H}$ and $\Delta E_{\rm ZPE}$ - $T\Delta S_{\rm H}$ of TM₂P monolayers for hydrogen evolution from DTF calculations.

	Fe ₂ P	Co ₂ P	Ni ₂ P	Pd ₂ P	Ru ₂ P
ΔE_{H} /eV	-0.49	-0.65	-0.50	-0.20	-0.52
$\Delta E_{ m ZPE}$ - $T\Delta S_{ m H}$ /eV	0.20	0.23	0.23	0.22	0.22

Sp	ecies	S	р	d	Charge (e)
Fe ₂ P	Р	1.52	3.44	0.00	0.04
	Fe	0.53	0.44	7.05	0.02
Co ₂ P	Р	1.54	3.44	0.00	0.02
	Co	0.58	0.43	8.01	-0.01
Ni ₂ P	Р	1.55	3.41	0.00	0.04
	Ni	0.58	0.51	8.94	-0.02
Ru ₂ P	Р	1.64	3.38	0.00	-0.01
	Ru	0.72	-0.17	7.44	0.01
Pd ₂ P	Р	1.66	3.08	0.00	0.25
	Pd	0.63	0.11	9.39	-0.13

Table S5 Atomic Mulliken charges in TM₂P monolayers

	J ₁ /meV	J ₂ /meV	J ₃ /meV	J ₄ /meV
Co ₂ P	31.06	1.08	4.11	2.10
Fe ₂ P	-44.08	-43.70	42.33	19.04

Table S6 Exchange coupling parameters $(J_1, J_2, J_3, and J_4)$ for Co₂P and Fe₂P monolayers.