Supplementary Information

Two-Dimensional Electronic Devices Modulated by the Activation of Donor-Like States in Boron Nitride

Sikandar Aftab¹, Samiya Samiya², Muhammad Waqas Iqbal³, Pragati A. Shinde¹, Muhammad Farooq Khan⁴, Atteq ur Rehman⁵, Saqlain Yousaf⁶, Sewon Park¹, Seong Chan Jun^{1*}

¹School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea

²Department of Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjingu, Korea

³Department of Physics, Riphah International University, 14 Ali Road, Lahore, Pakistan

⁴Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Korea.

⁵Department of Electrical engineering, Sarhad University of Science and Information Technology Peshawar, Pakistan ⁶Department of Physics, Sungkyunkwan University, Suwon, 440-746, South Korea

*E-mail: scj@yonsei.ac.kr

Figure S1. Raman spectra of (a) BN and (b) WSe₂. (c) Typical AFM image of BN on SiO₂/Si substrate. (d) Corresponding step profile height from the atomic force microscopy (AFM) line scan as indicated in the AFM image. The BN flake demonstrates a thickness of ~12.2 nm. (e) Typical AFM image of WSe₂ on the BN substrate. (f) Corresponding step profile height from the AFM line scan as indicated in the AFM image. The WSe₂ flake demonstrates a thickness of ~3.6 nm.

Figure S2. (a) I_D - V_D characteristics of p-WSe₂ in the log scale as a function of V_{bg}. Ohmic behavior is observed with the Pd/Au metal contacts. (b) I_D - V_D characteristics of n-WSe₂ in the log scale as a function of V_{bg}. Schottky contact behavior is observed with the Pd/Au metal contacts. Inset shows the plot of the rectification ratio as a function of V_{bg}.

Figure S3. Gate-dependent rectifying effect of the homojunction diode in the linear scale as a function of top ionic liquid gate voltage (V_{ILg}).

Figure S4. I_D - V_D characteristics of (a) p-WSe₂ with Pd/Au and (b) n-WSe₂ with Al/Au as a function of V_{ILg}. Ohmic contact contribution is observed.

Figure S5. Transfer characteristics of n-WSe₂ after photo-doping treatment showing the stability of the devices in an atmospheric environment.

Figure S6. Gate-dependent rectifying effect of the WSe₂ flake with Pd/Au and Al/Au source and drain electrodes in the log scale.

Figure S7. (a) Transfer characteristics of the diode at $V_{ds} = 0.5$ V for four doping regimes as a function of top gate voltage. (b) Schematic energy band diagrams at ($V_{ds} = 0.5$ V > 0) for the four doping configurations of the diode under the modulation of top gate voltage (V_{ILg}), presenting the tunability of built-in potential.