Supporting Information

Solution-processed organometallic quasi-two-dimensional nanosheets

as hole buffer layer for organic light-emitting devices

Shihao Liu^{a, f}, Ying-Chiao Wang^a, Chi-Ming Chang^b, Takeshi Yasuda^c, Naoya Fukui^d, Hiroaki Maeda^d, Peihua Long^d, Kazuo Nakazato^e, Wen-Bin Jian^b, Wenfa Xie^f, Kazuhito Tsukagoshi^{a*}, Hiroshi Nishihara^{d*}

a. WPI International Center for Materials Nanoarchitectonics (WPI-MANA) & International Center for Young Scientists (ICYS), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan

b. Department of Electrophysics, National Chiao Tung University, Hsinchu, 30010, Taiwan, Republic of China

c. Research Center for Functional Materials (RCFM), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan

d. School of Science, University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan

e. School of Engineering, Nagoya University, Chikusa, Nagoya, 464-8603, Japan

f. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.

*TSUKAGOSHI.Kazuhito@nims.go.jp, *nisihara@chem.s.u-tokyo.ac.jp

Fig. S1 (a) Schematic diagram for depositing NiDT organic nanosheet on ITO substrate in liquid/liquid interface fabrication process and (b) the obtained NiDT nanosheets on ITO substrate.

Fig. S2 Thickness of NiDT nanosheets vs. reaction time; the inset is an atomic force micrography image of the NiDT nanosheet obtained with a 12 h reaction.

Fig. S3 Raman spectra of NiDT nanosheets after oxygen/plasma treatment

Fig. S4 XPS spectra of NiDT nanosheets after oxygen/plasma treatment

Fig. S5 Normalized Atomic ratio R/R_0 of Ni, C, O and S calculated from XPS spectra of NiDT nanosheets after oxygen/plasma treatment. R_0 represents the atomic ratio of Ni, C, O and S for NiDT nanosheet without oxygen/plasma treatment.

Fig. S6 Deconvolution of S 2s peaks for NiDT nanosheet after oxygen/plasma treatment with (a) 0 min, (b) 1 min, (c) 5 min and (d) 10 min. Band 1 and 2 represents the -1 and 0 oxidation states, respectively, while band 3 is "shake-up" peak.

Fig. S7 Device structure used for measuring hole and electron current density of yellow polymer OLEDs.

Fig. S8 Power efficiency-luminance-external quantum efficiency (EQE) characteristics of NiDT and PEDOT:PSS devices with Super Yellow.

Fig. S9 Normalized luminance degradation $L(t)/L_0$ of the encapsulated NiDT employing Ir(ppy)₃ as emitter. L_0 is the luminance of 1000 cd/m². The device structures are ITO/NiDT nanosheet/ CBP:10 wt% Ir(ppy)₃/TPBi/LiF/A1.