Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Elucidating the Capacitive Desalination Behavior of Na_xCoO₂: the Significance

of Electrochemical Pre-activation

Zhenzhen Liu, Wei Ma, Haibo Li*

Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan,

Ningxia, 750021, P. R. China

*Corresponding author. Fax/Tel.: +86 0951 2062414; E-mail: lihaibo@nxu.edu.cn

(Haibo Li)

Experimental

The crystallite size was calculated as the following equation:

$$D = \frac{K\lambda}{\beta\cos\theta}$$
(S1)

Where *D* is the crystallite size, *K* is a constant (0.943), λ is the x-ray wavelength (0.154056 nm), β is the full width at half maximum of the diffraction peak, and θ is the diffraction angle. In the calculation, the full width at half maximum (β) needs to be converted into radians and substituted into the formula.

Sample	D (nm)
Na _{0.2} CO ₂	42.8705
Na _{0.5} CO ₂	45.0451
Na _{0.7} CO ₂	45.1625
Na _{1.0} CO ₂	45.0527
Na _{1.6} CO ₂	44.8798

Table S1 The average crystallite size of Na_xCoO_2 .

Table S2 Pore texture of Na_xCoO₂.

Sample	$S_{BET} (m^2/g)$	V (cm ³ /g)	D _{avg} (nm)
Na _{0.2} CO ₂	3.832	0.048	50.3
Na _{0.5} CO ₂	2.827	0.031	43.571
Na _{0.7} CO ₂	3.260	0.049	59.934
Na _{1.0} CO ₂	1.552	0.013	33.202
Na _{1.6} CO ₂	1.720	0.013	30.261

Table S3 $R_{s} \, \text{and} \, R_{ct}$ fitted from the equivalent circuit.

Sample	R _s	R _{ct}
Na _{0.2} CO ₂	5.87	0.47
Na _{0.5} CO ₂	7.39	1.35
Na _{0.7} CO ₂	0.83	0.12
Na _{1.0} CO ₂	3.55	1.31
Na _{1.6} CO ₂	5.48	3.09

Figure caption

Fig. S1 The elemental mapping image of (a) Na_{0.2}CoO₂, (b) Na_{0.5}CoO₂, (c) Na_{0.7}CoO₂,
(d) Na_{1.0}CoO₂ and (e) Na_{1.6}CoO₂.

Fig. S2 Current (a) and energy (b) profiles of $Na_{0.7}CoO_2 \parallel AC$ system in NaCl solution with an initial conductivity of 1000 μ S/cm.

Fig. S3 (a) The conductivity transient of $Na_{0.7}CoO_2$ in NaCl solution with an initial conductivity of 1000 μ S/cm at 0.3 and 0.6 V, (b) XRD patterns of $Na_{0.7}CoO_2$ after applying different potential

Fig. S4 The current transient of $Na_{0.7}CoO_2$ at 1.2 V and 0.6 V in NaCl solution with an initial conductivity of 1000 μ S/cm.

Fig. S5 XRD patterns of the initial Na_xCoO_2 and Na_xCoO_2 after sodium insertion (red line), the insert are corresponding SEM images of Na_xCoO_2 electrodes after sodium insertion.

Fig. S6(a) salt removal capacity (mg/g) in terms of potential (V) for Na_xCoO_2 with an initial conductivity of 1000 μ S/cm. (b) the effect of voltage on the CDI Ragone Kim-Yoon-Plot in NaCl solution.

Fig.	S1
115.	

Fig. S4

