ELECTRONIC SUPPLEMENTARY MATERIAL

Confined Synthesis of Carbon Dots with Tunable Long-Wavelength Emission in Layered Double Hydroxides 2-Dimentional Matrix

Wendi Liu, Ruizheng Liang, and Yanjun Lin*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

* Corresponding authors. Tel: +86-10-64412125; Fax: +86-10-64412125.

E-mail addresses: linyj@mail.buct.edu.cn (Y. Lin).

Supplementary Figures

Mg ²⁺ /Al ³⁺ ratio	C [wt.%]	N [wt.%]	S [wt.%]	H [wt.%]	0 [wt.%]
2.16	22.16	0.86	2.39	4.13	52.54
	Che	mical com	position		

Table S1 Elements content and chemical composition of CDs/LDH

Table S2 The fitting of fluorescence decay data of CDs/LDH

$\tau_i (\mathrm{ns})^{[\mathrm{a}]}$	A_i (%)	<\tau>(ns)	$\chi^{2[b]}$
0.363	25.38		
3.608	30.42	5.53	1.082
9.811	44.2		

[a] τ_i (*i*=1, 2, 3) is the fitted fluorescence lifetime. A_i is the percentage of τ_i . In this case, $<\tau >= A_1\tau_1 + A_2\tau_2 + A\tau_3$; $A_1 + A_2 + A_3 = 1$. [b] The goodness of fit is indicated by the value of χ^2 .

Fig. S1 Fluorescence excitation and emission spectra of i-CDs.

Fig. S2 UV-vis absorption spectra of MgAl-LDH and i-CDs.

Fig. S3 Raman spectrum of i-CDs.

Fig. S4 XPS survey spectrum of i-CDs.

Fig. S5 Fluorescence emission spectra of CDs-X(X=1-5, CDs synthesized with)

different DBS/DS ratio under hydrothermal condition without LDHs).

Fig. S6 XRD patterns of a) CILDH-X(X = 1-5) and b) CDs/LDH-X(X = 1-5).

Fig. S7 SEM images of a) CILDHs-1, b) CILDH-2, c) CILDH-3, d) CILDH-4 and e)

CILDH-5.

Table S3 Solid state Quantum yields (QYs) of CDs-based solid-state materials with

long-wavelength emission

Reference	Emission wavelength/nm	QY/%
ACS Nano, 2015, 9, 312	574	0.1
Small, 2017, 13, 1700075	640	9.6
Adv. Sci., 2017, 4, 1700395	575, 625	5.54, 8.5
Carbon, 2018, 136, 359	537	17.6
Chem. Commun., 2019, 55 , 6531	550	11.0
Small, 2019, 15, 1901161	605	32.7

Sample	$ au_i (\mathrm{ns})^{[\mathrm{a}]}$	A_i (%)	<7> (ns)	$\chi^{2[b]}$
	0.38	29.57		
CDs/LDH-1	2.801	30.94	4.52	1.219
	8.955	39.49		
	0.524	23.59		
CDs/LDH-2	4.970	43.28	6.23	1.257
	11.930	33.13		
	0.363	25.38		
CDs/LDH-3	3.608	30.42	5.53	1.082
	9.811	44.2		
	0.518	30.73		
CDs/LDH-4	3.765	38.38	5.05	1.322
	11.140	30.89		
	0.337	48.48		
CDs/LDH-5	3.145	37.02	2.81	1.049
	10.230	14.5		

Table S4 The fitting of fluorescence decay data of CDs/LDH-X(X = 1-5)

[a] τ_i (*i*=1, 2, 3) is the fitted fluorescence lifetime. A_i is the percentage of τ_i . In this case, $<\tau>=A_1\tau_1+A_2\tau_2+A\tau_3$; $A_1+A_2+A_3=1$. [b] The goodness of fit is indicated by the value of χ^2 .

Fig. S8 TEM images of a) i-CD-1, b) i-CD-2, c) i-CD-3, d) i-CD-4 and e) i-CD-5.

Fig. S9 Particle size distributions of a) i-CD-1, b) i-CD-2, c) i-CD-3, d) i-CD-4 and e)

i-CD-5.

Fig. S10 XPS survey spectra of i-CDs-X(X = 1-5)

Samples	C% (atom%)	N% (atom%)	S% (atom%)	N/C
i-CDs-1	86.78	6.49	6.74	0.075
i-CDs-2	86.60	8.26	5.14	0.095
i-CDs-3	79.85	8.58	11.57	0.107
i-CDs-4	76.53	9.20	14.27	0.120
i-CDs-5	82.70	10.69	6.61	0.129

Table S5. Elements content of i-CDs-X(X = 1-5)

Table S6. The nitrogen speciation percentages of i-CDs-X(X = 1-5) integrated from

N	I	1	S	X	PS	SĮ	be	ctra	1

Samples	Graphitic N (401.5 eV)	Pyrrolic N (399.6 eV)
i-CDs-1	55%	45%
i-CDs-2	57%	43%
i-CDs-3	75%	25%
i-CDs-4	84%	16%
i-CDs-5	86%	14%

Fig. S11 Photostability of the CDs/LDH and CDs/PVA upon irradiation by UV light

(365 nm) for 3600 s.

Fig. S12 In situ fluorescence spectra of CDs/LDHs-3 in the range from 20 °C to 100 °C; the insets display fluorescent microscopy images at 20 °C and 100 °C.

Fig. S13 Cross profile microscopy images of CDs/LDH@PVA film with

various film thickness.

Fig. S14 Stability of CDs/LDH based WLED under operation conditions for 12 h.