Surface Characterization of Nanoscale Co-Crystals Enabled through Tip Enhanced Raman Spectroscopy

Jakob Hübner,^{*, a, b} Tanja Deckert-Gaudig,^{c,d} Julien Glorian,^b Volker Deckert ^{c, d, e} and Denis Spitzer ^{a, b}

^a Nanomatériaux pour les Systèmes Sous Sollicitations Extrêmes (NS3E), ISL-CNRS-UNISTRA UMR 3208, French-German Research Institute of Saint-Louis, 5, rue du Général Cassagnou, B.P. 70034, 68301 Saint-Louis, France

^b French-German Research Institute of Saint-Louis, 5, rue du Général Cassagnou, B.P. 70034, 68301 Saint-Louis, France

^c Leibniz Institute of Photonic Technology (IPHT), Albert-Einsteinstr. 9, 07745 Jena, Germany

^d Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany

Institute of Quantum Science and Engineering, Texas A&M University, College Station, TX
77843-4242, USA

Supporting Information

Content

- S1. AFM topographic maps of n-CL-20/HMX nano-plates
- S2. Raman active vibrational frequencies and assignments
- S3. Calculation of approximated normal coordinates

S1. AFM topographic mappings of n-CL-20/HMX nano-plates

In the following further AFM topographic maps of n-CL-20/HMX nano-plates recorded in non-contact mode are presented. n-CL-20/HMX nano-plates occur as single particles as well as agglomerates along their crystallographic bc-axis. Figure 1 shows one of these agglomerates. The substructure of single nano-plates can be identified easily from the AFM topographic image. n-CL-20/HMX agglomerates can be randomly orientated towards the scattering system. Therefore, only single CL-20/HMX nano-plates were investigated via AFM-TERS in this study. Figure 2 depict a selection of different single and agglomerated CL-20/HMX nano-plates to demonstrate that these structures appear in the whole sample.

Figure 1. Left: AFM topographic mappings of several n-CL-20/HMX nano-plates. Single nano-plates show a height of ~30 nm. n-CL-20/HMX nano-plates built up agglomerates along their crystallographic bc-planes. **Right:** Single n-CL-20/HMX nano-plates and a CL-20/HMX nano-plate agglomerate.

Figure 2. Selection of single and agglomerated n-CL-20/HMX nano-plates.

S2. Raman active vibrational frequencies and assignments

In the following Raman spectra and tables of Raman active vibrational frequencies of β -CL-20, γ -CL-20, β -HMX, CL-20/HMX as well as their assignments are presented.

β-CL-20

Figure 3. Raman spectrum of β -CL-20 in a spectral range between 3200 cm⁻¹ and 300 cm⁻¹.

Table 1. Raman frequencies and their assignments of β -CL-20.

Raman frequencies of β-CL-20					
Experiment / cm ⁻¹ Literature / cm ⁻¹ [1]Assignments [1]					
320 m	319 m	cage def, CNN bend			
356 m	353, 369 w	cage def, N-NO ₂ bend			
400 vw	398 vw	N-NO ₂ bend			
436 vw	435 vw	N-NO ₂ bend			
457 vw	456 vw	N-NO ₂ bend			
507 vw	511 vw	NNO bend			
557 vw	560 vw	cage def			

579 vw	583 vw	cage def	
621 w	621 w	cage def	
670 vw	673 vw	NO bend	
719 vw	718 vw	NO bend, NNO ₂ bend	
740 vw	744 vw	ONO bend	
761 vw	762 vw	ONO bend	
789 w	791w	ONO bend	
803 w	803 w	ONO bend	
830 vs	832 s	ring CH wag	
913 w	912 w	ring str, ring CH wag	
933 vw	932, 944 w	ring str, ring CH wag	
994 w	982, 999 w	NN str	
1048 vw	1052 vw	NN str	
1068 w	1071 vw	NN str	
1088 m	1093 w	NN str	
1155 vw	1154 vw	CH bend	
1228 w	1229 w	CH bend, NO str sym	
1274 m	1276 m	CH bend, NO str sym	
1293 m	1295 w	CH bend, NO str sym	
1326 vs	1328 s	CH bend	
1378 vw	1377 vw	CH bend	
1391 vw	1390 vw	CH bend	
1494 vw	1496 vw	CH bend	
1557 vw	1557 vw	ONO str asym	
1570 vw	1570 vw	ONO str asym	
1582 w	1585 w	ONO str asym	
1595 w	1593 w	ONO str asym	
1626 m	1631 w	ONO str asym	
3027 m	3027 w	CH str	
3032 m	3036 m	CH str	
3043 s	3045 s	CH str	
3053 m	3056 m	CH str	

 β -CL 20 marker vibration (1595 cm⁻¹; ONO asymmetric stretching)) is marked in red. **Notes:** vs – very strong, s – strong, m – medium, w – weak, vw – very weak; asym – asymmetric, sym – symmetric, bend – bending, def – deformation, str – stretching, wag – wagging

γ-CL-20

Figure 4. Raman spectrum of γ -CL-20 in a spectral range between 3200 cm⁻¹ and 300 cm⁻¹.

Raman frequencies of γ-CL-20				
Experiment / cm ⁻¹	Literature / cm ⁻¹ [1]	Assignments [1]		
312 m	318 m	cage def		
334 w	340 vw	cage def		
370 w	366 w	cage def		
406 w	406 w	N-NO ₂ bend		
464 m	470, 479 vw	N-NO ₂ bend		
508 vw	512 w	N-NO ₂ bend		
557 vw	560 vw	N-NO ₂ bend		
585 w	592 w	cage def		
614 vw	613, 619 w	cage def		
635 vw	639 vw	cage def		
684 w	686 vw	ONO bend		

Table 2. Raman frequencies and their assignments of γ -CL-20.

719 vw	718 w	ONO bend	
747 w	750 vw	ONO bend	
768 vw	770 vw	ONO bend	
795 m	795, 807 w	ONO bend	
823 w	827 vw	ONO bend	
844 vs	846 m	ring CH wag	
858 m	858 m	ring CH wag	
878 vw	877 w	ring CH wag	
906 vw	909	ring CH wag	
933 w	935 vw	ring str, ring CH wag	
953 m	956 w	ring str, ring CH wag	
981 m	978 w	ring str, ring CH wag	
1048 w	1055 w	ring str, NN str	
1102 w	1105 w	NN str	
1142 w	1145 m	CH bend, ring str	
1182 vw	1179 w	CH bend, ring str	
1221 w	1220 vw	CH bend	
1234 m	1238 w	CH bend	
1254 s	1254 m	CH bend, NO str sym	
1273 s	1273 m	CH bend, NO str sym	
1306 s	1310	CH bend, NO str sym	
1319 vs	1324 s	CH bend, NO str sym	
1338 m	1336 w	CH bend, NO str sym	
1384 w	1389 w	CH bend	
1500 vw	1498 vw	ONO str asym	
1551 vw	1554 vw	ONO str asym	
1563 vw	-	ONO str asym	
1598 m	1600 m	ONO str asym	
1627 vw	-	ONO str asym	
3032 m	3034 s	CH str	
3048 vs	3043, 3050 s	CH str	
3059 s	3061 m	CH str	

 γ -CL 20 marker vibration (1598 cm⁻¹; ONO asymmetric stretching)) is marked in red. Notes: vs – very strong, s – strong, m – medium, w – weak, vw – very weak; asym – asymmetric, sym – symmetric, bend – bending, def – deformation, str – stretching, wag – wagging

β-ΗΜΧ

Figure 5. Raman spectrum of β -HMX in a spectral range between 3200 cm⁻¹ and 300 cm⁻¹.

Table 3. Raman fr	equencies and	l their assignment	ts of β-HMX.
-------------------	---------------	--------------------	--------------

Raman frequencies of β-HMX				
Experiment / cm ⁻¹	Literature / cm ⁻¹ [2-3]	Assignments [2]		
364 m	342	CN str, NN str, NCN bend		
414 m	412	NNO bend, NNC bend		
436 m	432	CNC bend, NNC bend		
593 w	597	NNO bend		
635 w	638	NNO bend, NN str		
664 w	662	NNO bend, NN str		
720 vw	721	ONO bend, CN str		
761 v	759	ONO wag		
837 vs	834	NC ₂ str sym		
885 s	881	NNC ₂ str sym		
954 s	950	NN str, CH ₂ rock		

967 w	965	CNN str asym, CH ₂ rock	
1082 vw	1090	NNC ₂ str asym	
1168 m	1168	CNN str asym, CH ₂ rock	
1188 m	1190	NC ₂ str asym	
1248 s	1248	NC ₂ str asym	
1267 m	1268	NO ₂ str sym	
1313 s	1312	CH ₂ twist	
1352 m	1350	CH ₂ twist	
1365 w	1368	CH ₂ wag	
1417 m	1418	CH ₂ wag	
1436 w	1438	HCH bend	
1455 w	1460	HCH bend	
1526 w	1532	NO ₂ str asym	
1570 m	1558	NO ₂ str asym	
2995 vs	2992	CH ₂ str sym	
3027 s	3028	CH ₂ str asym	
3038 s	3037	CH ₂ str asym	

β-HMX marker vibration (1417 cm⁻¹; CH₂ wagging) is marked in green. Notes: vs – very strong, s – strong, m – medium, w – weak, vw – very weak; asym – asymmetric, sym – symmetric, bend – bending, rock – rocking, str – stretching, twist – twisting, wag – wagging

Figure 6. Raman spectrum of CL-20/HMX co-crystal (2:1) in a spectral range between 3200 cm⁻¹ and 300 cm⁻¹.

Raman frequencies of CL-20/HMX (2:1)						
Experiment / cm ⁻¹	Literature / cm ⁻¹ (experimental) [4]	Assignments [4]				
356 m	360.4 w	HMX: ring def, CNC bend; CL-20: cage def				
393 w	395.3 w	CL-20: CNC bend, N-NO ₂ bend				
414 w	415.1 w	HMX: NCN bend, N-NO ₂ bend				
443 w	441.1 m	CL-20: CNC bend, N-NO ₂ bend				
515 vw	515.9 w	CL-20: NCN bend, N-NO ₂ bend, cage def				
557 vw	560.5 w	CL-20: CNC bend, N-NO ₂ bend				
593 w	591.5 m	CL-20: cage def, CNC bend N- NO_2 bend				

Table 4. Raman frequencies and their assignments of CL-20/HMX.

621 w	622.8 w	CL-20: cage def, $N-NO_2$ bend	
656 w	658.2 w	HMX: cage def, ONO bend, CNC bend	
664 w	665.7 vw	HMX: cage def, ONO bend, CNC bend	
719 w	719.3 w	CL-20: cage def, N-NO ₂ bend, CCN bend, HMX: ring def, CNC bend, ONO bend	
754 w	755.8 w	CL-20: CCN bend, ONO bend	
795 w	793.3 w	HMX: CNC bend, ONO bend	
837 vs	835.4 vs	CL-20: ONO bend, NCN bend	
858 w	856.0 m	CL-20: ONO bend, C-C str, N- N str	
879 w	878.6 m	HMX: CNC str, N-N str, ONO bend	
913 vw	908.3 w	CL-20: CNC str, CNC bend	
947 m	942.1 m	CL-20: C-C str , N-N str	
994 m	989.8 m	CL-20: C-C str, N-N str, ONO bend	
1055 w	1053.7 m	CL-20: N-N str, ONO bend, CH wag	
1102 m	1102.4 m	CL-20: NN tors, CH wag	
1168 m	1167.2 m	CL-20: CNC str asym	
1228 m	1230.3 m	HMX: CNC str asym	
1260 s	1257.3 s	CL-20: CH wag; HMX: CNC str, ONO str	
1280 s	1281.2 s	CL-20: CNC str asym, ONO str sym	
1300 s	1301.7 s	CL-20: CH wag, ONO str sym	
1320 s	1321.5 s	CL-20: CH bend, N-N str, ONO str sym	
1340 s	1342.3 s	CL-20: CH wag, CN str, ONO str sym	
1346 s	1353.1 w	CL-20: CH bend	
1378 w	1372.8 w	CL-20: CH bend; HMX: CH ₂ wag, ONO str sym, N-N str	
1417 w	1413.9 w	HMX: CH ₂ wag	
1430 w	1432.4 m	CL-20: CH bend, CNC str	
1500 vw	1505.8 w	HMX: CH ₂ bend	
1519 w	1517.2 w	HMX: CH ₂ bend	
1531 vw	1528.6 m	HMX: CH ₂ bend	
1563 w	1562.7 m	HMX: ONO str asym	
1576 w	1575.8 m	HMX: ONO str asym	
1595 m	1597.6 m	CL-20: ONO str asym	
1602 m	1604.2 m	CL-20: ONO str asym	
1608 m	1615.1 w	CL-20: ONO str asym	
3006 s	3006.5 s	HMX: CH str	
3016 s	3016.4 m	HMX: CH str	
3032 s	3033.6 s	CL-20: CH str	

3048 s	3050.8 vs	CL-20: CH str
3059 m	3059.3 m	CL-20: CH str

CL-20 marker vibration (1602cm⁻¹; ONO asymmetric stretching)) is marked in red, HMX marker vibration (1417 cm⁻¹, CH₂ wagging) is marked in green. **Notes:** vs – very strong, s – strong, m – medium, w – weak, vw – very weak; asym – asymmetric, sym – symmetric, bend – bending, rock – rocking, tors – torsion, str – stretching, twist – twisting, wag – wagging

S3. Calculation of approximated 3D normal coordinates

In a first step x-, y- and z-coordinates from all atoms which are involved mainly at the investigated molecular vibration were extracted from crystallographic data published by Bolton et al.⁵ These atoms are depicted and numbered in Figure 7. As already described within the paper, the N atoms of the NO₂ functional groups of CL-20 oscillate oppositely to the O atoms. Furthermore, the atomic derivations from their equilibrium position are the same for all involved NO₂ groups. Thus, the vectors $\vec{q}_{m;\beta \equiv CL \equiv 20}$, respectively $\vec{q}_{m;\gamma \equiv CL \equiv 20}$, describe approximately the oscillation of the NO₂ group. These vectors are presented as yellow arrows in Figure 7. The directions of these vectors correspond to the direction of movement of the individual N atoms during the oscillation. These directions were determined by simulated molecular vibrations computed with Gaussian 16.

Figure 7. Atoms involved in the investigated normal modes. Yellow arrows represent vectors describing approximately oscillation directions of single functional groups.

The summation of $\vec{q}_{m;\beta \boxtimes CL \boxtimes 20}$ and $\vec{q}_{m;\gamma \boxtimes CL \boxtimes 20}$ leads to the approximated normal coordinates $\vec{q}_{0;\beta \boxtimes CL \boxtimes 20}$ and $\vec{q}_{0;\gamma \boxtimes CL \boxtimes 20}$ of the ONO asymmetric stretching vibrations of the CL-20 polymorphs. Since the Cartesian coordinates of crystallographic data do not correspond with that of the Raman scattering system, they had to be transformed. Calculations and number values of $\vec{q}_{0;\beta \boxtimes CL \boxtimes 20}$ and $\vec{q}_{0;\gamma \boxtimes CL \boxtimes 20}$ are summed up in Table 5 respectively Table 6.

β-CL-20						
O-1			O-2		$\vec{q}_{1;\beta \mathbb{C} C L \mathbb{C} 2 0}$	
X	12.	245	X	14.052	X	1.807
У	6.	907	У	5.850	У	-1.057
Z	-4.	246	Z	-3.616	Z	0.630
O-3			O-4		$\dot{q}_{2;\beta \mathbb{C}L \mathbb{C}20}$	
X	11.	561	X	13.450	X	1.889
У	9.	040	У	8.479	У	-0.561
Z	-1.	344	Z	-0.427	Z	0.917
O-5			O-6		$\vec{q}_{3;\beta \mathbb{P}CL \mathbb{P}20}$	
X	9.	328	X	8.866	X	-0.462
У	2.	188	У	3.918	У	1.730
Z	-2.	549	Z	-3.797	Z	-1.248
						1
O-7			O-8		$q_{4;\beta \ CL \ 20}$	
X	9.	420	X	8.725	X	-0.695
У	5.	985	У	7.270	У	1.285
Z	1.	867	Z	0.255	Z	-1.612
→ a				•	$\vec{q}_{0;\beta \mathbb{Z}CL \mathbb{Z}20}$	(in Raman
<i>Ψ</i> 0; <i>β</i> 2 <i>CL</i> 220		cry	ystai axis	projection	scatterin	g system)
X	2.539		a	$z \rightarrow x$	X	1.397
y	1.397		b	$x \rightarrow y$	y	-1.313
Z	-1.313		c	$y \rightarrow z$	Z	2.539

Table 5.	Calculation	and number	values	of $q_{0;\beta \mathbb{C} L \mathbb{Z} 20}$
----------	-------------	------------	--------	---

γ-CL-20							
O-9			O-10		$\vec{q}_{1;\gamma \mathbb{C}L\mathbb{C}20}$		
X	8.	129	X	7.427	X	-0.702	
У	3.	647	У	4.858	У	1.211	
Z	0.	511	Z	-1.172	Z	-1.683	
O-11			O-12		$\vec{q}_{2;\gamma \mathbb{P}CL \mathbb{P}20}$		
X	7.	479	X	7.018	X	-0.461	
У	6.	018	У	7.748	У	1.730	
Z	3.	797	Z	2.549	Z	-1.248	
O-13			O-14		$\vec{q}_{3;\gamma \mathbb{P}CL \mathbb{P}20}$		
X	2.	896	X	4.785	X	1.889	
У	1.	457	У	0.896	У	-0.561	
Z	0.	427	Z	1.344	Z	0.917	
O-15			O-16		$\vec{q}_{4;\gamma \mathbb{P}CL \mathbb{P}20}$		
X	2.	293	X	4.100	X	1.807	
У	4.	086	У	3.029	У	-1.057	
Z	3.	616	Z	4.246	Z	0.630	
, a				·····	$\vec{q}_{0;\gamma \mathbb{Z}CL \mathbb{Z}20}$	(in Raman	
Ψ0;γℤ <i>CL</i> ℤ20		crystal axis		projection	scatterin	g system)	
Х	2.533		a	$z \rightarrow x$	X	1.323	
у	1.323		b	x → y	У	-1.384	
Z	-1.384		c	$y \rightarrow z$	Z	2.533	

Table 6	Calculation	and number	values o	$\int q_{0;\nu \mathbb{Z}CL\mathbb{Z}20}$
I abic v.	Calculation		values	JI -0,7 002020

In case of the HMX CH₂ wagging vibration the path which is covered by the H is a circular segment around the central C atom. This movement can be described mathematically by a partially rotation of a plane defined by C and H atoms of a CH₂ functional group around the C atom. Thus the direction of this movement can be expressed approximately by the normal vector $\vec{q}_{m;HMX}$ of this plane at the equilibrium position (Figure 7, bottom right). The direction of these vectors and thus their algebraic signs are depicted in Figure 7 (bottom left). Here again the summation of $\vec{q}_{m;HMX}$ gives the approximated normal coordinate $\vec{q}_{0;HMX}$ of the HMX CH₂ wagging vibration. Since HMX molecules in β conformation appear as image and mirror

image inside the CL-20/HMX co-crystal $\vec{q}_{0;HMX}$ has to be split into $\vec{q}_{0;HMX-1}$ and $\vec{q}_{0;HMX-2}$. The calculation and the number values of $\vec{q}_{0;HMX-1}$ and $\vec{q}_{0;HMX-2}$ can be found in Table 7 and Table 8. The approximated normal coordinate of both HMX conformations can be expressed as the average of $\vec{q}_{0;HMX-1}$ and $\vec{q}_{0;HMX-1}$:

β-HMX-1 (along b-axis)						
$\vec{q}_{1;HN}$	<i>IX</i> – 1	$\vec{q}_{2;H}$	<i>IMX</i> – 1			
X	-0.293	X	0.324			
у	-0.531	У	0.444			
Z	0.795	Z	0.835			
$\vec{q}_{3;HN}$	<i>IX</i> – 1	$\vec{q}_{4;F}$	<i>HMX</i> – 1			
X	0.324	X	-0.293			
y	0.444	y	-0.531			
Z	0.835	Z	0.795			
$\vec{q}_{0;HN}$	<i>IX</i> – 1	crystal axis	projection			
X	1.234	a	$z \rightarrow x$			
y	1.950	b	$x \rightarrow y$			
Z	0.080	<u>c</u>	$y \rightarrow z$			
q	0;HMX - 1 (in Ramar	scattering systen	n)			
X	0,080					
у	1,234					
Z	1,950					

				→
Table 7.	Calculation	and number	values	of $q_{0;HMX-1}$

Table 8. Calculation and number values of $\vec{q}_{0;HMX-1}$

β-HMX-2 (along b-axis)						
$\vec{q}_{1;HI}$	MX – 2	$\vec{q}_{2;H}$	<i>MX</i> – 2			
X	0.293	X	-0.324			
y	0.531	У	-0.444			
Z	-0.795	Z	-0.835			
${ec q}_{3;HMX-2}$		$\vec{q}_{4;H}$	<i>MX</i> – 2			
X	-0.324	X	0.293			

			1			
У	-0.444	y	0.531			
Z	-0.835	Z	-0.795			
$\vec{q}_{0;H}$	<i>MX</i> – 2	crystal axis	projection			
X	1.234	a	$z \rightarrow x$			
У	1.950	b	$x \rightarrow y$			
Z	0.080	c	$y \rightarrow z$			
$\vec{q}_{0;HMX-2}$ (in Raman scattering system)						
X		1.950				
у	0.080					
Z	1.234					

The approximated normal coordinate of both HMX conformations can be expressed as the average of $\vec{q}_{0;HMX-1}$ and $\vec{q}_{0;HMX-1}$:

$$\vec{q}_{0;\beta \square HMX} = \frac{1}{2} \left(\frac{\sum_{m=1}^{4} \vec{q}_{m;\beta \square HMX-1}}{n_{\beta - HMX-1}} + \frac{\sum_{m=1}^{4} \vec{q}_{m;\beta \square HMX-2}}{n_{\beta - HMX-2}} \right) = \begin{pmatrix} 1.950\\ 0.080\\ 1.234 \end{pmatrix}.$$
Eq. 1

In order to ensure a comparability of the approximated normal modes, $\vec{q}_{0;\beta \square CL \square 20}$, $\vec{q}_{0;\gamma \square CL \square 20}$ and $\vec{q}_{0;\beta \square HMX}$ are finally standardized. The standardization of the approximated normal mode vectors are depicted in Table 9.

Standardization of $\vec{q}_{0;\beta \square HMX}$							
	$\vec{q}_{0;\beta \square CL-20}$ standardized $\vec{q}_{0;\beta \square CL-20}$						
X	1.397	factor:	х	0.44			
у	-1.313	3.182	у	-0.41			
z	2.539		Z	0.80			
Standardization of $\vec{q}_{0;\beta \square HMX}$							
$\vec{q}_{0;\gamma \square CL \square 20}$ standardized $\vec{q}_{0;\gamma \square CL \square 20}$							
x 1.323 factor:			х	0.42			
У	-1.384	3.175	У	-0.44			
Z	2.533		Z	0.80			
Standardization of $\vec{q}_{0;\beta \square HMX}$							

Table 9. Standardization of approximated normal mode vectors

$\vec{q}_{0;\beta \square HMX}$			standardized $\vec{q}_{0;\beta\squareHMX}$		
х	1.950	factor:	х	0.84	
у	0.080	2.309	у	0.03	
Z	1.234		Z	0.53	

References

1. Ghosh, M.; Venkatesan, V.; Sikder, N.; Sikder, A. K., Quantitative Analysis of A-Cl-20 Polymorphic Impurity in E-Cl-20 Using Dispersive Raman Spectroscopy. *Central European Journal of Energetic Materials* **2013**, *10*.

2. Goetz, F.; Brill, T., Laser Raman Spectra of Alpha.-, Beta.-, Gamma.-, and Delta-Octahydro-1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazocine and Their Temperature Dependence. *Journal of Physical Chemistry* **1979**, *83*, 340-346.

3. Brand, H. V.; Rabie, R. L.; Funk, D. J.; Diaz-Acosta, I.; Pulay, P.; Lippert, T. K., Theoretical and Experimental Study of the Vibrational Spectra of the A, B, and Δ Phases of Octahydro-1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazocine (HMX). *The Journal of Physical Chemistry B* **2002**, *106*, 10594-10604.

4. Ghosh, M.; Sikder, A. K.; Banerjee, S.; Gonnade, R. G., Studies on Cl-20/Hmx (2: 1) Co-Crystal: A New Preparation Method, Structural and Thermo Kinetic Analysis. *Crystal Growth & Design* **2018**, *18*, 3781-3793.

5. Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J., High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of Cl-20:Hmx. *Crystal Growth & Design* **2012**, *12*, 4311-4314.