Supplementary Materials

Construction of a combined enzyme system of graphene oxide and manganese

peroxidase for efficient oxidation of aromatic compounds

Shichao Yang^{a,b,#}, Jun Yang^{a,b,#}, Tao Wang^{a,b}, Liuqing Li^{a,b}, Siming Yu^a, Rong Jia^{a,b,*},

Ping Chen c,*

^a School of Life Science, Anhui University, Hefei, Anhui, China

^b Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei,

China

^c School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui,

China

[#]Shichao Yang and Jun Yang contributed equally to this work.

Corresponding author*

Prof. Rong Jia Email: ahdxjiarong@126.com
School of Life Science, Anhui University, 111 jiulong Road, Economic and
Technology Development Zone, Hefei, Anhui, PR China 230601.
Prof. Dr. Ping Chen Email: chenping@ahu.edu.cn
School of Chemistry and Chemical Engineering, Anhui University, 111 jiulong Road,
Economic and Technology Development Zone, Hefei, Anhui, PR China 230601.

Fig. S1. Fluorescence spectra of MnP and GO-MnP. The MnP concentration was 100 μ g /mL in 0.01 M sodium acetate buffer solutions (1 mL, pH 5.9), and GO concentration was 30 and 60 μ g /ml (GO^a and GO^b), respectively.

Fig. S2. Decolorization of various dyes by MnP and GO-MnP at pH 3.5~5.5.

Fig. S3. Cyclic voltammograms of MnP and GO-MnP at different pH values.

Fig. S4. Molecular models of MnP by PyMOL software.

MAFKHLIAALSIVLSFGIAQAAITKRVACPDGKNTATNAACCSLFAIRDDIQANLFDGGE	60
CGEEVHESFRLTFHDAIGTGSFGGGGADGSIIVFDDIETNFHANNGVDEIIDEQKPFIAR ▲★ ★ ■ ■■● ● ● ■ ■	120
HNITPGDFIQFAGAVGVSNCPGAPRLDFFLGRPNPVAAAPDKTVPEPFDTVDSILARFKD	180
AGGFTPAEVVALLGSHTIAAADHVDPTIPGTPFDSTPEVFDTQVFVEVQLRGTLFPGTGG ■● ★ ■● ● ●	240
NQGEVQSPLRGEIRLQSDHDLARDSRTACEWQSFVNNQAKLQSAFKAAFKKLSVLGHNIN	300
NLIDCSEVIPEPPNVKVKPATFPAGITHADVEQACATTPFPTLATDPGPATSVAPVPPS	359

Fig. S5. Signal peptide and conserved amino acid residues in MnP. "__": signal peptide; "▲": conserved cysteines; "●": conserved heme pocket residues; "★": Mn²⁺ binding sites; "●": Ca²⁺ binding sites.

Table	S1	The	phy	vsicoc	hemical	pro	perties	of MnI)
1 abit		1110	PH.	y 51000	nonnour	pro	perties	01 min	•

Physicochemical property	Value	
Number of signal peptides	21	
Theoretical pI	4.67	
Molecular weight	35645	
Number of amino acids	338	
Negatively charged residues (Asp + Glu)	43	
Positively charged residues (Arg + Lys)	23	
GRAVY	-0.135	