SUPPORTING INFORMATION

Bottom-up Preparation of Hierarchically Porous MOF-modified Carbon Spheres Derivatives for Efficient Oxygen Reduction

Lulu Chai^{a,b,†}, Qi Huang^{a,†}, Cheng Han^a, Xian Wang^a, Linjie Zhang^{b,e}, Ting-Ting Li^c, Yue Hu^{a,*}, Jinjie Qian^{a,b,*}, and Shaoming Huang^{a,d,*}

Dedicated to the 60 years of the Fujian Institute of Research on the Structure of Matter.

 ^a Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
 ^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
 ^c School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China

^d School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China

^e Chimie du solide et de l'énergie-Collège de France 11 Place Marcelin Berthelot, Paris, 75005, France

† These authors contributed equally to this work.

*To whom correspondence should be addressed: E-mail: jinjieqian@wzu.edu.cn, smhuang@gdut.edu.cn; Tel: +86-577-88373064.

Table of Content

1. Experimental Details	S3; S4
2. Additional SEM, TEM, EDX Images	S5; S6; S7
3. Sorption Analyses	S8; S9; S10; S21
4. XPS data	S11; S12; S13; S14; S22
5. Other Electrochemistry Data	S15; S16; S17; S18; S19
6. Zn-air data	S20
6. Table of Comparison of ORR Performance	S23
7. References	S24

Experimental Details

Materials Characterization

The microscopic and nanostructured morphologies of all samples are characterized by scanning electron microscopy (SEM, JEOL JSM-6700F), transmission electron microscopy (TEM, FEI Tecnai F20, 200 kV), high-resolution transmission electron microscope and energy dispersive X-ray spectroscopy analyses (HR-TEM and EDS, JEOL JEM-2100F, 200 kV). The phase of samples are studied by powder X-ray diffraction (PXRD, Bruker D8-Advanced with Cu K α radiation) at 40 kV, 40 mA (λ = 1.5406 Å), Raman microscope (LabRAM HR Evolution, Thermo-Fisher Scientific, Excitation at 532 nm from an argon ion laser) and X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250). N₂ adsorption/desorption isotherms were used to characterize the determine specific surface areas and pore distribution of samples based on the Brunauer-Emmett-Teller method (BET, Micrometrics ASAP 2020 system).

Electrochemical Measurements.

The electrochemical performance of the samples was conducted in a three-electrode system using the Autolab workstation (Metrohm, Swiss) and/or CHI760E electrochemical workstation (CH Instruments, Shanghai) for ORR, which comprise a counter electrode (graphite rod), a reference electrode (Ag/AgCl (3M KCl)) and a working electrode (rotating ring-disk glass-carbon with catalyst, disk diameter is 5.6 mm). The working electrode is prepared by depositing the ink of catalysts. In a typical process to make up the electrode ink, 5 mg CoZn-ZIF/CS-1000 is dissolved in a mixed solvent containing 450 µL EtOH, 50 µL deionized water, and 20 µL Nafion (5%) to form a homogeneous catalyst ink by ultrasonicating for 3 h. Then 20 µL of the as-prepared droplet is deposited onto the surface of GCE electrode and dried at room temperature condition (a mass loading of ~ 0.35 mg cm⁻²). Before every test, the electrolyte (0.1 M KOH) is pre-purged with pure O₂ for 30 min to make sure it is O₂-saturated. Firstly, scanning 40 cycles of cyclic voltammetry (CV) curves until the signals is stabilized. The linear sweep voltammetry (LSV) is scanning at a potential scan rate of 5 mV s⁻¹ at different rotational speeds from 100 to 2500 rpm for ORR. For data analyzing, all the potential are transferred with reference to standard reversible hydrogen electrode (RHE) according to following equation: $E_{RHE} = E_{Ag/AgCl} + 0.964$ V in 0.1 M KOH. To evaluate the active surface area of catalysts, the double-layer capacitance (C_d) is determined by measuring the CV plots in the region

from 1.00 to 1.10 V vs. RHE at various scan rate from 5 to 200 mV s⁻¹ in N₂-saturated 0.1 M KOH in non-Faradaic potential region. By fitting the current density at 1.15 V vs. RHE at various scan rates, the linear trend is observed and equal to the slope of the linear C_{dl}. All electrochemical impedance spectroscopy (EIS) measurement wasrecorded at the same overpotential of 0.6 V vs. RHE in the frequency range of 10^{-2} - 10^{6} Hz with an amplitude of 5 mV. Electrocatalytic stability is made by using current-time (i-t) chronoamperometric at 0.6 V in O₂-saturated 0.1 M KOH for 10 h.

The electron transfer number (n) and yield of the H_2O_2 intermediate were calculated according to the Koutecky-Levich (K-L) equations (1-2) and RRDE technologies (3-4), as shown in the following equations:

$$1/\mathbf{j} = 1/\mathbf{j}_{\mathrm{L}} + 1/\mathbf{j}_{\mathrm{K}} \tag{1}$$

$$\mathbf{j}_{\mathrm{L}} = \frac{\mathbf{0.2nFC}_{0}\mathbf{D}_{0}}{\mathbf{v}^{1/6}} \cdot \frac{1}{\boldsymbol{\omega}^{1/2}} = \mathbf{B} \cdot \frac{1}{\boldsymbol{\omega}^{1/2}}$$
(2)

$$\mathbf{n} = \frac{4\mathbf{I}_{d}}{\mathbf{I}_{d} + \mathbf{I}_{r}/\mathbf{N}} \tag{3}$$

$$\mathbf{H}_{2}\mathbf{O}_{2}(\boldsymbol{\%}) = \frac{2\mathbf{I}_{r}/\mathbf{N}}{\left|\mathbf{I}_{d}\right| + \mathbf{I}_{r}/\mathbf{N}} \times 100\boldsymbol{\%}$$
(4)

In these formulas, J is the experimental current density, J_L is the diffusion-limited current density, and J_K is the kinetic current density, respectively; ω is the rotation speed in rpm (round per minute), F is the Faraday constant (96,485 C mol⁻¹), C₀ is the bulk concentration of oxygen (1.2 ×10⁻⁶ mol cm⁻³), D₀ is the diffusion coefficient of oxygen in 0.1 M KOH (1.9×10⁻⁵ cm² s⁻¹), and υ is the kinetic viscosity (0.01 cm² s⁻¹). When the speed of rotation is also represent as rpm, 0.2 is a constant. The n can be extracted from the slope of the K-L plot. Ir is the ring current, I_d is the disk current and N expresses to the collection efficiency of the ring electrode (0.37).

Figure S1. SEM images of (a) poly-disperse Zn-BTC spheres; (b) functionalized CS; (c) PDA/CS; (d) CoZn-ZIF/CS; (e) Co-ZIF/CS; (f) Zn-ZIF/CS;

Figure S2. (a, b) SEM, (c) TEM; (d, e) HR-TEM images at different magnification of the **Co-ZIF/CS-1000** spheres, respectively; (f) the corresponding SAED pattern; (g) EDX spectrum; (h) HAADF-STEM image and the corresponding C, N, O, and Co mappings of the **Co-ZIF/CS-1000** spheres.

Figure S3. (a) SEM, (b) TEM; (c) HR-TEM images of the **Zn-ZIF/CS-1000** spheres, inset in (c) shows the corresponding SAED pattern; (d) EDX spectrum; (e) HAADF-STEM image and the corresponding C, N, and Zn mappings of the **Zn-ZIF/CS-1000** spheres.

Figure S4. Nitrogen sorption isotherms at 77 K (closed, adsorption; open, desorption) and the corresponding pore size distribution curves of (a) CS, (b) PDA/CS.

Figure S5. Nitrogen sorption isotherms at 77 K (closed, adsorption; open, desorption) and the corresponding pore size distribution curves of (a) **Co-ZIF/CS**; (b) **Zn-ZIF/CS**; and (c) **CoZn-ZIF/CS**.

Figure S6. The dV/dlogD curves of CoZn-ZIF/CS-1000, Co-ZIF/CS-1000, and Zn-ZIF/CS-1000.

Figure S7. Full survey XPS spectra of Co-ZIF/CS-1000 and Zn-ZIF/CS-1000.

Figure S8. The high-resolution XPS C 1s, N 1s, O 1s, and Co 2p spectra of Co-ZIF/CS-1000.

Figure S9. The high-resolution XPS C 1s, N 1s, O 1s, and Zn 2p spectra of Zn-ZIF/CS-1000.

Figure S10. Deconvoluted Zn 2p XPS spectra for CoZn-ZIF/CS series at different temperatures.

The Zn $2p_{3/2}$ peak at a binding energy of 1022.1 eV in CoZn-ZIF/CS remains unchanged, which is in good agreement with the Zn cation with a valence of +2. At high temperatures, the complete decomposition (400 °C) to carbonization (1000 °C) shows a gradual shift in the Zn 2p peak position from 1022.0 eV to 1021.6 eV in **Figure S10**, which indicates the transformation of Zn(II) to metal Zn(0).

Figure S11. RRDE plots with various rotation speeds at a scan rate of 5 mV s⁻¹ and Koutecky-Levich (K-L) plots at various voltages at 1600 rpm in O₂-saturated 0.1 M KOH solution of (a, d) **Co-ZIF/CS-1000**, (b, e) **Zn-ZIF/CS-1000**, and (c, f) **Pt/C**.

Figure S12. Hydrogen peroxide yields of the CoZn-ZIF/CS-1000, Co-ZIF/CS-1000, Zn-ZIF/CS-1000, and Pt/C in O₂-saturated 0.1 M KOH electrolyte at 1600 rpm.

Figure S13. CV plots of the (a) CoZn-ZIF/CS-1000, (b) Co-ZIF/CS-1000, (c) Zn-ZIF/CS-1000, (d) Pt/C in 0.1 M KOH solution in the region of 1.00-1.10 V vs. RHE for ORR.

Figure S14. (a) SEM, (b) TEM, and (c, d) HR-TEM images of CoZn-ZIF/CS-1000 after ORR stability test for 10 h.

Figure S15. PXRD patterns of CoZn-ZIF/CS-1000 before (Black) and after (Red) ORR stability test for 10 h.

Figure S16. Open circuit voltage curves of Zn-air batteries with different CoZn-ZIF/CS-1000 material and Pt/C.

Sample	Surface area/m ² g ⁻¹		Total pore	Micropore		
	BET method	Langmuir method	volume ^a /cm ³ g ⁻¹	volume ^b /cm ³ g ⁻¹	V _{meso+macro} /V _{micro}	
CS	1336	1748	0.67 0.53		0.26	
PDA/CS	159	128	0.09	0.06	0.56	
Co-ZIF/CS	311	355	0.15	0.12	0.25	
Zn-ZIF/CS	638	713	0.26	0.25	0.03	
CoZn-ZIF/CS	500	558	0.21	0.19	0.06	
Co-ZIF/CS-1000	354	386	0.36	0.05	6.08	
Zn-ZIF/CS-1000	1015	1303	0.57	0.24	1.34	
CoZn-ZIF/CS-1000	586	625	0.39	0.11	2.44	

Tables S1. Pore characteristics of all samples mentioned in the main article.

Table S2. C, N contents and N dopant proportions of CoZn-ZIF/CS-1000, Zn-ZIF/CS-1000,and Co-ZIF/CS-1000 catalysts measured from fitting of the N 1s XPS.

Comula	C 1s	N 1s	Relative content of different N species /%				N _{effective}
Sample	/wt%	/wt%	pyridinic-N	pyrrolic-N	graphitic-N	oxidized-N	$/N_{total}$ /%
CoZn-ZIF/CS-1000	85.82	3.44	30.07	19.64	28.33	21.96	58.4
Co-ZIF/CS-1000	89.46	2.94	22.43	17.69	34.01	25.87	56.44
Zn-ZIF/CS-1000	90.74	2.80	29.71	20.64	29.71	19.93	59.42

Tip: N_{effective}=N_{pyridinic-N}+N_{graphitic-N}

Catalyst	E _{onset} (V vs RHE)	E _{1/2} (V vs RHE)	n ^e	J _L (mA cm-2)	Reference
C-CZ-4-1000	1.03	0.89	3.99	5.9	[S1]
VNHSs	0.83	-	3.9	5.5	[S2]
Co-C@NWCs	0.94	0.83	3.99	4.51	[83]
MM02C/NCS	0.92	0.83	3.5	4.48	[S4]
meso/micro-FeCo-N _x -CN-30	-	0.89	-	6.3	[85]
CoHNCS-0.2	0.94	0.82	3.84	5.8	[S6]
Fe-N-RFC_C240	0.998	0.91	3.99	5.48	[S7]
A-NHCN-800	0.9	0.81	3.9	3.63	[S8]
Fe-N-C HNSs	1.046	0.84	3.98	5.8	[89]
FeNC-950	0.94	0.84	3.95	5.85	[S10]
CoZn-ZIF/CS-1000	0.93	0.82	3.82	5.11	This work

 Table S3. Comparison of ORR performance for CoZn-ZIF/CS-1000 with reported carbonbased electrocatalysts.

References

[S1] L. Ge, Y. Yang, L. Wang, W. Zhou, R. D. Marco, Z. G. Chen, J. Zou, Z. H. Zhu, High activity electrocatalysts from metal-organic framework-carbon nanotube templates for the oxygen reduction reaction, Carbon 2015, 82, 417-424.

[S2] D. Zhao, Z. T. Cui, S. G. Wang, J. W. Qin, M. H. Cao, VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction, J. Mater. Chem. A 2016, 4, 7914-7923.

[S3] Y. Y. Li, F. Y. Cheng, J. N. Zhang, Z. M. Chen, Q. Xu, S. J. Guo, Cobalt-Carbon Core-Shell Nanoparticles Aligned on Wrinkle of N-Doped Carbon Nanosheets with Pt-Like Activity for Oxygen Reduction, small 2016, 12, 2839-2845.

[S4] Y. N. Guo, J. Tang, J. Henzie, B. Jiang, H. Y. Qian, Z. L. Wang, H. B. Tan, Y. Bando, Y. Yamauchi, Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo₂C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen, Mater. Horiz. 2017, 4, 1171-1177.

[S5] S. Li, C. Cheng, X. J. Zhao, J. Schmidt, A. Thomas, Active Salt/Silica-Templated 2D Mesoporous FeCo-Nx-Carbon as Bifunctional Oxygen Electrodes for Zinc-Air Batteries, Angew. Chem. Int. Ed. 2018, 57, 1856-1862.

[S6] X. D. Chen, K. Shen, J. Y. Chen, B. B. Huang, D. N. Ding, L. Zhang, Y. W. Li, Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for highefficiency electrocatalysis, Chemical Engineering Journal 2017, 330, 736-745.

[S7] M. Kim, H. S. Kim, S. J. Yoo, W. C. Yoo, Y.-E. Sung, The role of pre-defined microporosity in catalytic site formation for the oxygen reduction reaction in iron- and nitrogen-doped carbon materials, J. Mater. Chem. A 2017, 5, 4199-4206.

[S8] B. He, F. J. Liu, Y. Liu, S. Yan, Development of $g-C_3N_4$ activated hollow carbon spheres with good performance for oxygen reduction and selective capture of acid gases, Electrochimica Acta 2019, 324, 134869.

[S9] Y. F. Chen, Z. J. Li, Y. B. Zhu, D. M. Sun, X. E. Liu, L. Xu, Y. W. Tang, Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction, Adv. Mater. 2019, 31, 1806312.

S24

[S10] Y. M. Ma, S. S. Luo, M. H. Tian, J. E. Lu, Y. Peng, C. Desmond, Q. M. Liu, Q. X. Li, Y. L. Min, Q. J. Xu, S. W. Chen, Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen reduction reaction, Journal of Power Sources 2020, 450, 227659.