Supporting information

Nucleobase Derived Boron and Nitrogen co-doped Carbon Nanosheets as Efficient Catalyst for Selective Oxidation and Reduction Reactions

Guangming Wang, a Peng Wang, a Xuefei Zhang, a Qiao-Hua Wei, a Shuchang Wu*b and Zailai Xie*a

[a] G. Wang, P. Wang, X. Zhang, Q. H. Wei, Prof. Dr. Z. Xie
College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
[b] Dr. S. Wu
School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang Province, China

* Corresponding author. E-mail: zlxie@fzu.edu.cn
scwu10b@alum.imr.ac.cn
Figure S1. TEM images of the spent BNC (a-c), BNC-2 (d-f) and BNC-1 (g-i)

Figure S2. The performance of each catalyst for the reduction of nitrobenzene

Conditions: 10 mg of catalyst, 5 mmol of nitrobenzene, 4 equivalent of hydrazine
hydrate, 100 °C.

Figure S3. Recyclability of BNC in the reduction of nitrobenzene