SUPPLEMENTARY INFORMATION

Enhanced Li-ion storage performance of novel tube-in-tube

structured nanofibers with hollow metal oxide nanospheres

covered with a graphitic carbon layer

Gi Dae Park and Yun Chan Kang*

Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

Experimetal Section

1. Materials characterization

The morphologies of nanofibers were investigated using scanning electron microscopy (SEM, VEGA3) and transmission electron microscopy (TEM, JEM-2100F). The crystal structures and chemical properties of nanofibers were analyzed using X-ray diffraction spectroscopy (XRD, X'pert PRO with Cu K_{α} radiation, $\lambda = 1.5418$ Å) at the Korea Basic Science Institute, Daegu, and X-ray photoelectron spectroscopy (XPS, Thermo ScientificTM, K-AlphaTM). The properties and the amount of pitch derived carbon was characterized via Raman spectroscopy (Jobin Yvon LabRam HR800), using a 632.8 nm He/Ne laser at room temperature for excitation, and thermogravimetric analysis (TGA, Pyris 1 Thermogravimetric Analyzer, PerkinElmer) in the range of 25–700 °C at 10 °C min⁻¹ in an air-based atmosphere, respectively. The surface area and porosities of samples were analyzed using the Brunauer–Emmett–Teller (BET) method with high-purity N₂.

2. Electrochemical measurements

The electrochemical properties of the nanofibers were analyzed using a 2032-type coin cell. The anode was prepared by mixing the active material, carbon black, and sodium carboxymethyl cellulose in a weight ratio of 7:2:1. Lithium metal and microporous polypropylene films were used as counter electrode and separator, respectively. The electrolyte was 1 M LiPF₆ dissolved in a mixture of fluoroethylene carbonate-dimethyl carbonate (FEC/DMC; 1:1 v/v). The discharge and charge characteristics of the samples were investigated by cycling in the potential range of 0.001-3.0 V at various current densities. Cyclic voltammograms (CVs) were measured at a scan rate of 0.1 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was performed on the electrode over a frequency range of 0.01-100 kHz. In-situ EIS analysis was performed at preselected potentials during the discharge and charge processes at a current density of 0.1 A g⁻¹. For full cell assembly, yolkshell structured LiNi_{0.5}Mn_{1.5}O₄ powders with a loading mass of 4.2 mg cm⁻² were used as cathode, while the anode mass loading was maintained at 0.42 mg cm⁻². Further information on LiNi_{0.5}Mn_{1.5}O₄ powders has been provided in our previous reports. The electrolyte was a 1.0 M LiPF₆ dissolved in an ethylene carbonate/diethyl carbonate mixture (EC/DEC; 1:1 v/v). Before assembling the full cell, the anode was pretreated using electrochemical lithiation to

suppress the first irreversible capacity loss. The electrochemical properties of the 2032-type coin full cells were examined at 0.5 A g^{-1} in the potential window of 2.0–4.6 V. The electrode capacity was calculated according to the weight of the anode materials.

Fig. S1. Morphologies of of as-spun Co(acac)₃-Fe(acac)₃-PAN composite precursor nanofibers and stabilized nanofibers: (a,b) as-spun precursor nanofibers and (c,d) stabilized nanofibers.

Fig. S2. Morphologies of $CoFe_2O_4$ nanofibers with tube-in-tube nanostructures ($CoFe_2O_4$ _TIT).

Fig. S3. XRD patterns of CoFe₂O₄_TIT, CoFe₂@GC@AC_TIT, and CoFe₂O₄@GC_TIT.

Fig. S4. Morphologies of CoFe₂@GC@AC nanofibers with tube-in-tube nanostructures (CoFe₂@GC@AC_TIT).

Fig. S5. Morphologies of tube-in-tube structured nanofibers comprising hollow $CoFe_2O_4$ nanospheres coated with GC layers ($CoFe_2O_4@GC_TIT$).

Fig. S6. XPS survey scan of CoFe₂O₄@GC_TIT.

Fig. S7. TG curve of $CoFe_2O_4@GC_TIT$ and $CoFe_2O_4_TIT$.

Fig. S8. (a) N_2 gas adsorption and desorption isotherms and (b) pore size distributions of $CoFe_2O_4@GC_TIT$ and $CoFe_2O_4_TIT$.

Fig. S9. XPS spectra of CoFe₂O₄@GC_TIT obtained after the first cycle: (a) Co 2p, (b) Fe 2p, (c) O1s, and (d) Li 1s.

Fig. S10. (a) gravimetric and (b) areal capacities of $CoFe_2O_4@GC_TIT$ with the different active materials mass loadings.

Fig. S11. Morphologies of $CoFe_2O_4@GC_TIT$ and $CoFe_2O_4_TIT$ after 100 cycling at a current density of 1.0 A g⁻¹.

Fig. S12. SEM images of CoFe₂O₄@GC_TIT after 1400 cycles.

Materials	Current rate	Discharge capacity [mA h g ⁻¹] and (cycle number)	Rate capacity [mA h g ⁻¹] (current rate)	Ref
Co ₃ O ₄ -nanobubble decorated rGO sphere	2.0 A g ⁻¹	1156 (200)	842 (10.0 A g ⁻¹)	[S1]
Graphene-wrapped mesoporous cobalt oxide hollow spheres	1.0 A g ⁻¹	600 (500)	259 (5.0 A g ⁻¹)	[S2]
Cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers	1.0 A g ⁻¹	984 (400)	802 (1.2 A g ⁻¹)	[S3]
CoO/Co ₃ O ₄ -graphene hybrids	1.0 A g ⁻¹	670 (700)	455 (4.0 A g ⁻¹)	[S4]
Carbon-encapsulated Fe ₃ O ₄ nanoparticles	5.0 A g ⁻¹	836 (350)	297 (20.0 A g ⁻¹)	[S5]
N-doped dual carbon- confined 3D architecture rGO/Fe ₃ O ₄ /AC	5.0 A g ⁻¹	~500 (500)	437 (10.0 A g ⁻¹)	[S6]
Pomegranate-like, carbon- coated Fe ₃ O ₄	5.0 A g ⁻¹	520 (1000)	416 (10.0 A g ⁻¹)	[S7]
Neuron-inspired Fe ₃ O ₄ - conductive carbon	1.0 A g ⁻¹	971 (1000)	206 (8.0 A g ⁻¹)	[S8]
Macroporous Fe ₃ O ₄ @C	2.0 A g ⁻¹	645 (1000)	300 (10.0 A g ⁻¹)	[S9]
C@CoFe ₂ O ₄ fiber-in-tube mesoporous nanostructure	0.2 A g ⁻¹	700 (150)	488 (1.6 A g ⁻¹)	[S10]
Core/shell structured CoFe2O4/onion-like C nanocapsules	0.1 A g ⁻¹	914 (500)	617 (3.7 A g ⁻¹)	[\$11]
Layer-stacked CoFe ₂ O ₄ mesoporous platelets	5.0 A g ⁻¹	580 (2000)	654 (10.0 A g ⁻¹)	[S12]
Tube-in-tube structured nanofibers comprising hollow CoFe ₂ O ₄ nanospheres coated with GC layers	3.0 A g ⁻¹	682 (1400)	355 (50.0 A g ⁻¹)	In this work

Table S1. Electrochemical properties of various cobalt and iron oxide electrode materials reported in the previous literature.

References

[S1] G.D. Park, J.S. Cho, Y.C. Kang, Nano Energy, 2015, 17, 17-26.

[S2] H. Sun, X. Sun, T. Hu, M. Yu, F. Lu, J. Lian, J. Phys. Chem. C, 2014, 118, 2263-2272.

[S3] X. Wang, Y. Tang, P. Shi, J. Fan, Q. Xu, Y. Min, Chem. Eng. J., 2018, 334, 1642-1649.

[S4] C. Hu, J. Yang, C. Yu, S. Li, Y. Mu, S. Bai, M. Wang, S. Liang, J. Qiu, *Chem. Eur. J.*, 2019, **25**, 5527-5533.

[S5] C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano, 2013, 7, 4459-4469.

[S6] R. Ding, J. Zhang, J. Qi, Z. Li, C. Wang, M. Chen, ACS Appl. Mater. Interfaces, 2018, **10**, 13470-13478.

[S7] D. Han, G. Guo, Y. Yan, T. Li, B. Wang, A. Dong, *Energy Storage Mater.*, 2018, **10**, 32-39.

[S8] S.-M. Hao, Q.-J. Li, J. Qu, F. An, Y.-J. Zhang, Z.-Z. Yu, ACS Appl. Mater. Interfaces, 2018, 10, 17923-17932.

[S9] Z. Yan, X. Jiang, Y. Dai, W. Xiao, X. Li, N. Du, G. He, ACS Appl. Mater. Interfaces, 2018, **10**, 2581-2590.

[S10] J. Wang, G. Yang, L. Wang, W. Yan, W. Wei, J. Alloys Compd., 2017, 693, 110-117.

[S11] X. Liu, N. Wu, C. Cui, P. Zhou, Y. Sun, J. Alloys Compd., 2015, 664, 59-65.

[S12] Z. Zhang, W. Li, R. Zou, W. Kang, Y. S. Chui, M. F. Yuen, C.-S. Lee, W. Zhang, J. *Mater. Chem. A*, 2015, **3**, 6990-6997.