Electronic Supplementary Information

Oxygen Vacancies-Rich Amorphous Porous NiFe(OH)_x Derived from Ni(OH)_x/Prussian Blue as Highly Efficient Oxygen Evolution Electrocatalysts

Shuang Wang,^a Xingbo Ge,^{*a} Chao Lv,^b Cun Hu,^b Hongtai Guan,^a Jing Wu,^a Zhengnan Wang,^a Xianhui Yang,^a Yan Shi,^b Jiangfeng Song,^b Zhi Zhang,^b Akira Watanabe ^c and Jinguang Cai *^b

^a School of Chemistry and Chemical Engineering, Southwest Petroleum University,

Chengdu 610500, P. R. China

^b Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908,

Sichuan, P. R. China

^c Institute of Multidisciplinary Research for Advanced Materials, Tohoku University,

2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan

*Corresponding authors: xbge@swpu.edu.cn; caijinguang@foxmail.com

Fig. S1. SEM images (a, b) of a bare CP film.

Fig. S2. CV curves for the electrodeposition of the PB layer on CP.

Fig. S3. Low-magnification SEM image of the PB/CP.

Fig. S4. TEM image of the PB nanoparticles peeling off from the carbon paper under strong ultrasonic.

Fig. S5. XRD patterns of the PB/CP, $Ni(OH)_x$ /CP, $Ni(OH)_x$ /PB/CP, and $NiFe(OH)_x$ /CP.

Fig. S6. SEM images of PB/CP samples obtained at different $Fe(NO_3)_3$ and $K_3[Fe(CN)_6]$ concentrations: 0.5 mM $Fe(NO_3)_3$ and 1 mM $K_3[Fe(CN)_6]$ (a, b), 1 mM $Fe(NO_3)_3$ and 0.5 mM $K_3[Fe(CN)_6]$ (c, d), and 2 mM $Fe(NO_3)_3$ and 0.5 mM $K_3[Fe(CN)_6]$ (e, f).

Fig. S7. Full XPS spectra of the PB/CP, $Ni(OH)_x/CP$, $Ni(OH)_x/PB/CP$, and $NiFe(OH)_x/CP$ (a) and high resolution O1s peak of the PB/CP (b).

Fig. S8. Fe 2p XPS spectrum of the typical $NiFe(OH)_x/CP$.

Fig. S9. iR-corrected polarization curves (a), corresponding Tafel plots (b), and EIS spectra (c) of the NiFe(OH)_x/CP and NiFe(OH)_x/CP-R.

Fig. S10. Low- and high-magnification SEM images of the $NiFe(OH)_x/CP$ after OER operation.

Fig. S11. XPS spectra of the NiFe(OH)_x/CP before and after OER operation: Ni 2p (a) and Fe 2p (b).

Fig. S12. SEM images of $Ni(OH)_x/PB/CP$ obtained at different electrodeposition time of the $Ni(OH)_x$ layer in 1 mM $Ni(NO_3)_2$ solution: 60 s (a), 600 s (b), 2700 s (c), and 3600 s (d).

Fig. S13. LSV polarization curves (a), corresponding overpotentials at 100 mA cm⁻² (b), Tafel slope plots (c), and EIS spectra (d) of the Ni(OH)_x/PB/CP prepared in 1 mM Ni(NO₃)₂ solution for different times.

Fig. S14. SEM images of $Ni(OH)_x/PB/CP$ prepared in $Ni(NO_3)_2$ solutions with different concentrations: 10 mM (a), 20 mM (b), and 50 mM (c).

Fig. S15. LSV polarization curves (a), Tafel plots (b), and EIS spectra (c) for the $Ni(OH)_x/PB/CP$ prepared in $Ni(NO_3)_2$ solutions with different concentrations.

Sample	Fe(NO ₃) ₃ [mM]	K₃[Fe(CN)₀] [mM]	KCI [M]	H₂SO₄ [mM]
а	0.5	0.5	0.1	12.5
b	0.5	1	0.1	12.5
с	1	0.5	0.1	12.5
d	2	0.5	0.1	12.5

Table S1. Concentrations of the electrolyte for electrochemical deposition of PB layer.

Table S2. Summary on the OER performance of earth-abundant OER catalysts in 1.0 M KOH.

Catalysts ^{a)}	Loading amount [mg cm ⁻²]	Substrate	η@10 m A cm⁻² [mV]	η@100 mA cm ⁻² [mV]	Tafel slope [mV dec ⁻¹]	Stability test	Reference
Amorphous porous NiFe(OH) _x layer	~ 0.8	Carbon paper	261	303	33.8	50 h	This work
Oxygen-enriched NiFe- LDH	0.28	Glassy carbon	310	_	74	9	1
NiFe LDH	1.03	Graphdiyne	260	_	95	6	2
NiFeOOH derived from NiFe PBA	0.25	Glassy carbon	258	304	46	-	3
Porous NiFe oxide nanocubes derived from NiFe PBA	2.2	Carbon fiber paper	271	_	48	18 h	4
NiFe oxyhydroxide derived from CN vacancy-mediated- PBA	0.255	Glassy carbon	283	_	54	25 h	5
FeNi LDH/Ti ₃ C ₂ MXene	0.2	Ni foam	298	_	43	12	6
Phosphorylated NiFe hydroxide	_	Carbon fiber paper	290	_	38	10 h	7
N-doped carbon-coated core-shell NiFeO _x @NiFe phosphide derived from NiFe PBA/PVP	0.2	Glassy carbon	285	_	48	20 h	8
NiFeSe@NiSe O derived from NiFe PBA	_	Carbon fiber	270	360	63.2	50 h	9
Plasma activated Co- PBA	2.0	Ni foam	274	330	53	-	10
Ni ₃ FeN nanoparticles/Reduced graphene oxide aerogel	0.5	Ni foam	270	_	54	10	11
FeNi ₃ and NiFe ₂ O ₄ embedded in N-doped carbon-carbon nanotube	0.5	Glassy carbon	274	_	_	11	12
Hybrid Ni-based MOFs nanosheets decorated	0.2	Glassy carbon	265	_	82	_	13

with Fe-MOF nanoparticles							
MOF-derived hierarchical (Co,Ni)Se ₂ @NiFe LDH hollow nanocages	_	Glassy carbon	277	_	75	17	14

^{a)} LDH: layered double hydroxide; PBA: Prussian blue analogue; PVP: polyvinylpyrrolidone; MOF: metal-organic framework.

Table S3. Molar ratio of Ni/Fe measured by ICP-OES for the Ni(OH) _x /PB/CP samples
obtained at different deposition conditions of $Ni(OH)_x$ layer.

Ni(NO ₃) ₂ concentration [mM]	Deposition time [s]	Molar ratio of Ni/Fe		
1	60	0.33		
1	600	1.8		
1	1200	1.9		
1	2700	2.7		
1	3600	3.4		
10	1200	2.9		
20	1200	36.25		
50	1200	165.6		

Reference

- Chen, H.; Zhao, Q.; Gao, L.; Ran, J.; Hou, Y. Water-Plasma Assisted Synthesis of Oxygen-Enriched Ni–Fe Layered Double Hydroxide Nanosheets for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7, 4247-4254.
- 2 Shi, G.; Yu, C.; Fan, Z.; Li, J.; Yuan, M. Graphdiyne-Supported NiFe Layered Double Hydroxide Nanosheets as Functional Electrocatalysts for Oxygen Evolution. *ACS Applied Materials & Interfaces* **2019**, *11*, 2662-2669.
- 3 Su, X.; Wang, Y.; Zhou, J.; Gu, S.; Li, J.; Zhang, S. Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. *Journal of the American Chemical Society* **2018**, *140*, 11286-11292.
- 4 Kumar, A.; Bhattacharyya, S. Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting. *ACS Applied Materials & Interfaces* **2017**, *9*, 41906-41915.
- 5 Yu, Z.-Y.; Duan, Y.; Liu, J.-D.; Chen, Y.; Liu, X.-K.; Liu, W.; Ma, T.; Li, Y.; Zheng, X.-S.; Yao, T.; Gao, M.-R.; Zhu, J.-F.; Ye, B.-J.; Yu, S.-H. Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. *Nature Communications* **2019**, *10*, 2799.
- 6 Yu, M.; Zhou, S.; Wang, Z.; Zhao, J.; Qiu, J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. *Nano Energy* **2018**, *44*, 181-190.

- 7 Li, Y.; Zhao, C. Enhancing Water Oxidation Catalysis on a Synergistic Phosphorylated NiFe Hydroxide by Adjusting Catalyst Wettability. *ACS Catalysis* 2017, 7, 2535-2541.
- 8 Hu, Q.; Liu, X.; Tang, C.; Fan, L.; Chai, X.; Zhang, Q.; Liu, J.; He, C. Facile fabrication of a 3D network composed of N-doped carbon-coated core–shell metal oxides/phosphides for highly efficient water splitting. *Sustainable Energy & Fuels* 2018, *2*, 1085-1092.
- 9 Yilmaz, G.; Tan, C. F.; Lim, Y.-F.; Ho, G. W. Pseudomorphic Transformation of Interpenetrated Prussian Blue Analogs into Defective Nickel Iron Selenides for Enhanced Electrochemical and Photo-Electrochemical Water Splitting. *Advanced Energy Materials* 2019, 9, 1802983.
- 10 Guo, Y.; Wang, T.; Chen, J.; Zheng, J.; Li, X.; Ostrikov, K. Air Plasma Activation of Catalytic Sites in a Metal - Cyanide Framework for Efficient Oxygen Evolution

Reaction. Advanced Energy Materials **2018**, *8*, 1800085.

- 11 Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C.; Komarneni, S.; Yang, D.; Yao, X. Electronic Structure Tuning in Ni₃FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano 2018, 12, 245-253.
- 12 Zhao, X.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Bifunctional

Electrocatalysts for Overall Water Splitting from an Iron/Nickel - Based

Bimetallic Metal-Organic Framework/Dicyandiamide Composite. *Angewandte Chemie International Edition* **2018**, *57*, 8921-8926.

- Rui, K.; Zhao, G.; Chen, Y.; Lin, Y.; Zhou, Q.; Chen, J.; Zhu, J.; Sun, W.; Huang, W.; Dou, S. X. Hybrid 2D Dual-Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis. *Advanced Functional Materials* 2018, 28, 1801554.
- 14 Li, J.-G.; Sun, H.; Lv, L.; Li, Z.; Ao, X.; Xu, C.; Li, Y.; Wang, C. Metal–Organic Framework-Derived Hierarchical (Co,Ni)Se₂@NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Applied Materials & Interfaces 2019, 11, 8106-8114.