Effectively Modulating Vertical Tunneling Transport by Mechanically Twisting Bilayer Graphene within All-metallic Architecture

Xian Chen ^{1, †}, Tianmin Wu ^{3, *}, Wei Zhuang ^{2, *}

- 1 College of Artificial Intelligence, Yango University, Fuzhou 350015, China
- 2 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000
- 3 Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China

* To whom correspondence should be addressed. E-mail: <u>wzhuang@fjirsm.ac.cn</u>, <u>wtm@mail.ustc.edu.cn</u>

Fig. S1. The transmission spectra at high symmetry point K for each interlayer twist angle.

Fig. S2. The transmission spectra at high symmetry point Gamma for each interlayer twist angle.

Fig. S3. The transmission spectra at high symmetry point M for each interlayer twist angle.

Fig. S4. The electronic band structure of AB-stacking bilayer graphene and its corresponding transmission spectra (purple line) at high symmetry point (Gamma, K and M) which is shifted to match the eigenvalue in the electronic band structure, respectively. The amplitude of transmission probabilities is adjusted to a uniform scale to facilitate comparison.

Fig. S5. The projected density of states on XY plane in the middle position between bilayer graphene at Fermi energy level (E=0 eV) for 0° interlayer twist angle.

Fig. S6. The projected density of states on XY plane in the middle position between bilayer graphene at Fermi energy level (E=0 eV) for 6° interlayer twist angle.

Fig. S7. The projected density of states on XY plane in the middle position between bilayer graphene at Fermi energy level (E=0 eV) for 7.3° interlayer twist angle.

Fig. S8. The projected density of states on XY plane in the middle position between bilayer graphene at Fermi energy level (E=0 eV) for 9.4° interlayer twist angle.

Fig. S9. The projected density of states on XY plane in the middle position between bilayer graphene at Fermi energy level (E=0 eV) for 13.2° interlayer twist angle.

Fig. S10. The projected density of states on XY plane in the middle position between bilayer graphene at Fermi energy level (E=0 eV) for 21.8° interlayer twist angle.