Supporting Information

# Gold nanoclusters as electrocatalysts: Size, ligands, heteroatom

# doping, and charge dependences

Bharat Kumar,<sup>1,†,‡</sup> Tokuhisa Kawawaki,<sup>1,2,‡</sup> Nobuyuki Shimizu,<sup>1</sup> Yukari Imai,<sup>a</sup> Daiki Suzuki,<sup>a</sup> Sakiat Hossain,<sup>1</sup> Lakshmi V. Nair<sup>1</sup> and Yuichi Negishi<sup>1,2,\*</sup>

<sup>1</sup>Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan

<sup>2</sup> Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278–8510, Japan

<sup>†</sup> Present address; Department of Chemistry, M V College Buxar, Veer Kunwar Singh University, Ara, Bihar 802101, India

<sup>‡</sup> These authors contributed equally to this work.

Corresponding Author E-mail: negishi@rs.kagu.tus.ac.jp

## 1. Additional Scheme



**Scheme S1.** Expected future energy conversion system consisting of photocatalysts and fuel cell. If this system would be constructed, the fossil fuels are not consumed and the carbon dioxide is not emitted.<sup>1</sup>

# 2. Additional Table

|                                                      | Current Density (mA cm <sup>-2</sup> mg <sup>-1</sup> ) |              |        |                                |        |        |  |  |
|------------------------------------------------------|---------------------------------------------------------|--------------|--------|--------------------------------|--------|--------|--|--|
| Cluster                                              | Α                                                       | ctual Values | a      | Normalized Values <sup>b</sup> |        |        |  |  |
|                                                      | -0.7 V                                                  | -0.6 V       | -0.5 V | -0.7 V                         | -0.6 V | -0.5 V |  |  |
| $[Au_{25}(PET)_{18}]^0$                              | -17.8                                                   | -10.2        | -3.9   | 100                            | 100    | 100    |  |  |
| $[Au_{38}(PET)_{24}]^0$                              | -16.3                                                   | -6.8         | -2.2   | 91.3                           | 66.8   | 56.8   |  |  |
| $[Au_{130}(PET)_{50}]^0$                             | -11.6                                                   | -4.2         | -1.4   | 65.0                           | 41.2   | 35.0   |  |  |
| $[Au_{144}(PET)_{60}]^0$                             | -11.3                                                   | -5.3         | -2.2   | 63.2                           | 52.4   | 56.5   |  |  |
| $[Au_{329}(PET)_{84}]^0$                             | -8.0                                                    | -3.8         | -1.7   | 44.8                           | 37.0   | 42.9   |  |  |
| $[Au_{25}(C6T)_{18}]^0$                              | -27.0                                                   | -13.9        | -4.1   | 151.4                          | 136.7  | 104.3  |  |  |
| $[Au_{25}(C12T)_{18}]^0$                             | -3.6                                                    | -1.2         | -0.4   | 20.4                           | 11.5   | 11.1   |  |  |
| $[Au_{20.5}Ag_{4.5}(PET)_{18}]^0$                    | -9.9                                                    | -4.6         | -1.2   | 55.7                           | 45.3   | 29.4   |  |  |
| $[Au_{23.7}Cu_{1.3}(PET)_{18}]^0$                    | -3.2                                                    | -0.6         | -0.1   | 18.0                           | 5.6    | 2.4    |  |  |
| $[Au_{24}Pd(PET)_{18}]^0$                            | -27.1                                                   | -12.1        | -5.4   | 151.7                          | 119.2  | 137.6  |  |  |
| [Au <sub>25</sub> (PET) <sub>18</sub> ] <sup>-</sup> | -26.0                                                   | -13.9        | -8.1   | 145.7                          | 136.7  | 206.0  |  |  |

Table S1. Current Density of HER at Each Voltage (vs. RHE)

<sup>*a*</sup> These values were estimated from Figure 1(a), Figure 3(a) and Figure 5(a). <sup>*b*</sup> These values are normalized with that of  $[Au_{25}(PET)_{18}]^0$ .

| Table S | S2. ( | Current l | Density | of | OER | at | Each | Voltage | (vs. | RHE) | ) |
|---------|-------|-----------|---------|----|-----|----|------|---------|------|------|---|
|         |       |           | •/      |    |     |    |      |         | •    | ,    |   |

|                                                                 | Current Density (mA cm <sup>-2</sup> mg <sup>-1</sup> ) |              |       |                                |              |       |  |  |
|-----------------------------------------------------------------|---------------------------------------------------------|--------------|-------|--------------------------------|--------------|-------|--|--|
| Cluster                                                         | A                                                       | ctual Values | а     | Normalized Values <sup>b</sup> |              |       |  |  |
|                                                                 | 2.2 V                                                   | 2.1 V        | 2.0 V | 2.2 V                          | <b>2.1</b> V | 2.0 V |  |  |
| $[Au_{25}(PET)_{18}]^0$                                         | 8.55                                                    | 3.99         | 1.68  | 100                            | 100          | 100   |  |  |
| $[Au_{38}(PET)_{24}]^0$                                         | 5.63                                                    | 2.58         | 1.29  | 65.9                           | 64.7         | 76.9  |  |  |
| $[Au_{130}(PET)_{50}]^0$                                        | 4.52                                                    | 1.97         | 0.87  | 52.9                           | 49.4         | 51.8  |  |  |
| $[Au_{144}(PET)_{60}]^0$                                        | 3.56                                                    | 1.57         | 0.70  | 41.6                           | 39.3         | 41.6  |  |  |
| $[Au_{329}(PET)_{84}]^0$                                        | 3.19                                                    | 1.55         | 0.80  | 37.3                           | 38.8         | 47.7  |  |  |
| $[Au_{25}(C6T)_{18}]^0$                                         | 8.95                                                    | 3.99         | 1.87  | 104.7                          | 103.2        | 111.1 |  |  |
| $[Au_{25}(C12T)_{18}]^0$                                        | 1.23                                                    | 0.58         | 0.43  | 14.4                           | 14.5         | 25.8  |  |  |
| $[Au_{20.5}Ag_{4.5}(PET)_{18}]^0$                               | 7.39                                                    | 3.49         | 1.42  | 86.5                           | 87.6         | 84.8  |  |  |
| $[Au_{23.7}Cu_{1.3}(PET)_{18}]^0$                               | 8.65                                                    | 3.75         | 1.57  | 101.2                          | 94.1         | 93.4  |  |  |
| $\left[\mathrm{Au}_{24}\mathrm{Pd}(\mathrm{PET})_{18}\right]^0$ | 9.47                                                    | 3.92         | 1.51  | 110.8                          | 98.2         | 89.7  |  |  |
| $[Au_{25}(PET)_{18}]^{-1}$                                      | 10.31                                                   | 4.83         | 2.75  | 120.6                          | 121.2        | 164.0 |  |  |

<sup>*a*</sup> These values were estimated from Figure 1(c), Figure 3(c) and Figure 5(c). <sup>*b*</sup> These values are normalized with that of  $[Au_{25}(PET)_{18}]^0$ .

|                                   | Current Density (mA cm <sup>-2</sup> mg <sup>-1</sup> ) |              |                |                                |        |       |  |  |
|-----------------------------------|---------------------------------------------------------|--------------|----------------|--------------------------------|--------|-------|--|--|
| Cluster                           | A                                                       | ctual Values | s <sup>a</sup> | Normalized Values <sup>b</sup> |        |       |  |  |
|                                   | -0.2 V                                                  | -0.1 V       | -0 V           | -0.2 V                         | -0.1 V | -0 V  |  |  |
| $[Au_{25}(PET)_{18}]^0$           | -0.85                                                   | -0.87        | -0.75          | 100                            | 100    | 100   |  |  |
| $[Au_{38}(PET)_{24}]^0$           | -0.49                                                   | -0.40        | -0.33          | 57.0                           | 46.2   | 44.0  |  |  |
| $[Au_{130}(PET)_{50}]^0$          | -0.44                                                   | -0.33        | -0.18          | 51.2                           | 38.4   | 24.6  |  |  |
| $[Au_{144}(PET)_{60}]^0$          | -0.30                                                   | -0.23        | -0.14          | 35.3                           | 26.2   | 19.2  |  |  |
| $[Au_{329}(PET)_{84}]^0$          | -0.14                                                   | -0.05        | -0.03          | 16.8                           | 5.9    | 4.7   |  |  |
| $[Au_{25}(C6T)_{18}]^0$           | -0.91                                                   | -1.05        | -0.67          | 106.8                          | 121.3  | 89.3  |  |  |
| $[Au_{25}(C12T)_{18}]^0$          | -0.54                                                   | -0.40        | -0.26          | 63.7                           | 46.5   | 34.2  |  |  |
| $[Au_{20.5}Ag_{4.5}(PET)_{18}]^0$ | -0.78                                                   | -1.04        | -0.72          | 91.4                           | 119.9  | 96.2  |  |  |
| $[Au_{23.7}Cu_{1.3}(PET)_{18}]^0$ | -0.75                                                   | -0.81        | -0.62          | 88.4                           | 93.0   | 82.4  |  |  |
| $[Au_{24}Pd(PET)_{18}]^0$         | -0.95                                                   | -0.91        | -0.78          | 111.8                          | 104.5  | 104.2 |  |  |
| $[Au_{25}(PET)_{18}]^{-}$         | -1.13                                                   | -0.72        | -0.41          | 133.4                          | 83.2   | 54.2  |  |  |

Table S3. Current Density of ORR at Each Voltage (vs. RHE)

 $\frac{1.15}{a} = 0.72 = 0.41 = 133.4 = 83.2 = 54.2$ These values were estimated from Figure 1(e), Figure 3(e) and Figure 5(e). <sup>b</sup> These values are normalized with that of [Au<sub>25</sub>(PET)<sub>18</sub>]<sup>0</sup>.

### 3. Additional Figures



**Figure S1.** Geometrical structures of (a)  $[Au_{25}(SR)_{18}]^{0,2}$  (b)  $[Au_{38}(SR)_{24}]^{0,3}$  (c)  $[Au_{130}(SR)_{50}]^{0,4}$  (d)  $[Au_{144}(SR)_{60}]^{0,5}$  and (e)  $[Au_{329}(SR)_{84}]^{0}$  (SR = 2-phenylethanethiolate (PET) or 4-methylbenzenethiolate).<sup>6</sup> The geometrical structures of (a)–(d) were determined by single crystal X-ray structural diffraction (SCXRD), whereas the geometrical structure of (e) is the proposed structure on the basis of the chemical composition<sup>6</sup>.



**Figure S2.** Geometrical structures of (a) PET, (b) 1-hexanethiolate (C6T), (c) 1-dodecanethiolate (C12T). The length of ligand was estimated from the geometrical structures <sup>2,7,8</sup>.



**Figure S3.** Geometrical structures of (a)  $Au_{25}(PET)_{18}$ ,<sup>2</sup> (b)  $Au_{18.3}Ag_{6.7}(PET)_{18}$ ,<sup>9</sup> (c)  $Au_{23.6}Cu_{1.4}(PET)_{18}$ ,<sup>10</sup> and (d)  $Au_{24}Pd(PET)_{18}$ <sup>11</sup>. The geometrical structures of (a) and (b) were determined by SCXRD for their anion forms. However, since  $[Au_{25}(PET)_{18}]^{-}$  and  $[Au_{25}(PET)_{18}]^{0}$  have similar framework structures,<sup>2</sup>  $[Au_{24.6}Ag_{0.4}(PET)_{18}]^{0}$  is also considered to have a similar geometrical structure to that of the anion form (b). The geometrical structure of (d) is determined by SCXRD for the neutral form ( $[Au_{24}Pd(PET)_{18}]^{0}$ ). The geometrical structure of (c) is the proposed structure on the basis of the result obtained by extended X-ray absorption fine structure analysis.<sup>10</sup>



**Figure S4.** MALDI mass spectra of (a)  $[Au_{25}(PET)_{18}]^0$ , (b)  $[Au_{38}(PET)_{24}]^0$ , (c)  $[Au_{130}(PET)_{50}]^0$ , (d)  $[Au_{144}(PET)_{60}]^0$  and (e)  $[Au_{329}(PET)_{84}]^0$ . These mass spectra include or consists of the laser-fragments of the parent clusters. These mass spectra include only the peaks due to the parent clusters.<sup>12</sup>



**Figure S5.** Optical absorption spectra of (a)  $[Au_{25}(PET)_{18}]^0$ , (b)  $[Au_{38}(PET)_{24}]^0$ , (c)  $[Au_{130}(PET)_{50}]^0$ , (d)  $[Au_{144}(PET)_{60}]^0$  and (e)  $[Au_{329}(PET)_{84}]^0$ . These spectra are well consistent with the reported spectra for these clusters,  $^{2,5,13-15}$  indicating that the synthesized clusters have high purity.



Figure S6. MALDI mass spectra of (a) [Au<sub>25</sub>(PET)<sub>18</sub>]<sup>0</sup>, (b) [Au<sub>25</sub>(C6T)<sub>18</sub>]<sup>0</sup>, and (c) [Au<sub>25</sub>(C12T)<sub>18</sub>]<sup>0</sup>.



**Figure S7.** Optical absorption spectra of (a)  $[Au_{25}(PET)_{18}]^0$ , (b)  $[Au_{25}(C6T)_{18}]^0$ , and (c)  $[Au_{25}(C12T)_{18}]^0$ . These spectra are well consistent with the literature,<sup>2,16</sup> indicating that the synthesized clusters have high purity.



**Figure S8.** MALDI mass spectra of (a)  $[Au_{25}(PET)_{18}]^0$ , (b)  $[Au_{20.5}Ag_{4.5}(PET)_{18}]^0$ , (c)  $[Au_{23.7}Cu_{1.3}(PET)_{18}]^0$ , and (d)  $[Au_{24}Pd(PET)_{18}]^0$ . The asterisk (\*) indicates  $[Au_{24}Pd(PET)_{17}(C12T)]^0$ .



**Figure S9.** Optical absorption spectra of (a)  $[Au_{25}(PET)_{18}]^0$ , (b)  $[Au_{20.5}Ag_{4.5}(PET)_{18}]^0$ , (c)  $[Au_{23.7}Cu_{1.3}(PET)_{18}]^0$ , and (d)  $[Au_{24}Pd(PET)_{18}]^0$ . These spectra are well consistent with the reported spectra for these clusters.<sup>2,17-19</sup>



Figure S10. MALDI mass spectra of (a)  $[Au_{25}(PET)_{18}]^0$  and (b)  $[Au_{25}(PET)_{18}]^-$ .



**Figure S11.** Optical absorption spectra of (a)  $[Au_{25}(PET)_{18}]^0$  and (b)  $[Au_{25}(PET)_{18}]^-$ . These spectra are well consistent with the reported spectra for those clusters,<sup>2</sup> indicating that the synthesized clusters have high purity. The spectra (c) shows the optical absorption spectra of  $[Au_{25}(PET)_{18}]^-$  after the electrochemical measurement. This spectral feature is quite similar to that of  $[Au_{25}(PET)_{18}]^0$ , indicating that  $[Au_{25}(PET)_{18}]^-$  was oxidized to  $[Au_{25}(PET)_{18}]^0$  during the electrochemical measurement.



Figure S12. Schematic diagram for the preparation of working electrode with catalysts.



**Figure S13.** Surface atoms used for the estimation of the number of surface atoms in each sample (Table 1); (a)  $[Au_{25}(PET)_{18}]^{0,2}$  (b)  $[Au_{38}(PET)_{24}]^{0,3}$  (c)  $[Au_{130}(PET)_{50}]^{0,4}$  (d)  $[Au_{144}(PET)_{60}]^{0,20}$  and (e)  $[Au_{329}(PET)_{84}]^{0,6}$  Reprinted with permission from refs 5 and 6. Copyright 2015 American Chemical Society.



**Figure S14.** Comparison of HER activity between  $[Au_{25}(PET)_{18}]^0$  and  $[Au_{25}(PET)_{18}]^-$ . This result indicates that  $[Au_{25}(PET)_{18}]^-$  shows higher activity than  $[Au_{25}(PET)_{18}]^0$ . However, as shown in Figure S11(b)(c),  $[Au_{25}(PET)_{18}]^-$  is oxidized to  $[Au_{25}(PET)_{18}]^0$  during the electrochemical measurement, indicating that  $[Au_{25}(PET)_{18}]^-$  is not stable under the electrochemical measurement condition.



**Figure S15.** Comparison of optical absorption spectra before and after the electrochemical measurements; (a)  $[Au_{25}(PET)_{18}]^0$ , (b)  $[Au_{24}Pd(PET)_{18}]^0$ , (c)  $[Au_{38}(PET)_{24}]^0$ , (d)  $[Au_{130}(PET)_{50}]^0$ , (e)  $[Au_{144}(PET)_{60}]^0$ , and (f)  $[Au_{329}(PET)_{84}]^0$ .

#### 4. References

- 1. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov and T. F. Jaramillo, *Science*, 2017, **355**, eaad4998.
- 2. M. Zhu, W. T. Eckenhoff, T. Pintauer and R. Jin, J. Phys. Chem. C, 2008, 112, 14221-14224.
- 3. H. Qian, W. T. Eckenhoff, Y. Zhu, T. Pintauer and R. Jin, J. Am. Chem. Soc., 2010, 132, 8280-8281.
- 4. Y. Chen, C. Zeng, C. Liu, K. Kirschbaum, C. Gayathri, R. R. Gil, N. L. Rosi and R. Jin, J. Am. Chem. Soc., 2015, 137, 10076–10079.
- 5. N. Yan, N. Xia, L. Liao, M. Zhu, F. Jin, R. Jin and Z. Wu, Sci. Adv., 2018, 4, eaat7259.
- 6. C. Kumara, X. Zuo, J. Ilavsky, D. Cullen and A. Dass, J. Phys. Chem. C, 2015, 119, 11260-11266.
- 7. D. K. Tarakci, S. Berber, Y. Zorlu, D. Atilla, V. Ahsen and F. Dumoulin, New J. Chem., 2015, 39, 3929-3935.
- 8. Z. Yang, A. B. Smetana, C. M. Sorensen and K. J. Klabunde, Inorg. Chem., 2007, 46, 2427–2431.
- 9. C. Kumara, C. M. Aikens and A. Dass, J. Phys. Chem. Lett., 2014, 5, 461-466.
- 10. S. Yamazoe, W. Kurashige, K. Nobusada, Y. Negishi and T. Tsukuda, J. Phys. Chem. C, 2014, 118, 25284-25290.
- 11. S. Tian, L. Liao, J. Yuan, C. Yao, J. Chen, J. Yang and Z. Wu, Chem. Commun., 2016, 52, 9873-9876.
- 12. Y. Negishi, T. Nakazaki, S. Malola, S. Takano, Y. Niihori, W. Kurashige, S. Yamazoe, T. Tsukuda and H. Häkkinen, J. Am. Chem. Soc., 2015, 137, 1206–1212.
- 13. C. Zeng, C. Liu, Y. Pei and R. Jin, ACS Nano, 2013, 7, 6138-6145.
- 14. V. R. Jupally and A. Dass, Phys. Chem. Chem. Phys., 2014, 16, 10473-10479.
- 15. C. Kumara and A. Dass, Anal. Chem., 2014, 86, 4227-4232.
- 16. Y. Lu, Y. Jiang, X. Gao and W. Chen, Chem. Commun., 2014, 50, 8464-8467.
- 17. Y. Negishi, T. Iwai and M. Ide, Chem. Commun., 2010, 46, 4713-4715.
- 18. E. Gottlieb, H. Qian and R. Jin, Chem.-Eur. J., 2013, 19, 4238-4243.
- 19. H. Qian, E. Barry, Y. Zhu and R. Jin, Acta Phys. -Chim. Sin., 2011, 27, 513-519.
- 20. X. Kang and M. Zhu. Coord. Chem. Rev., 2019, 394, 1-38.