Supporting Information

Self-formed C-Dots-Based 2D Polysiloxane with High Photoluminescence Quantum Yield and Stability

Guangqi Hu^{1,2}, Xiaokai Xu², Bingfu Lei², Jianle Zhuang², Xuejie Zhang², Haoran Zhang², Chaofan Hu², Xiaotang Liu^{2*}, Yingji He^{1*}, Yingliang Liu^{2*}

1* School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China

2* College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

*Email: <u>tliuyl@scau.edu.cn</u>.

Figure S1. (a) The representative AFM image of quasi-2-dimensional dual-fluorescence P-E-Si-CDs. (b) XRD patterns of Psi and dual-fluorescence P-E-Si-CDs.

Figure S2. The fluorescence spectra of P-E-Si-CDs synthesized at different temperature under 395 nm excitation.

Table S1. Fitting results of the afterglow lifetimes of the P-E-Si-CDs at 440 nm and 515 nm under 395 nm excitation.

Emission(nm)	t1(ns)	B1(%)	t2(ns)	B2(%)	t _{avg} (ns)
440	2.20	40.62	1.63	59.38	1.86
515	7.04	27.37	2.81	72.63	3.97

Elements	Psi	P-E-Si-CDs
С	43.98	56.36
Ν	18.54	7.93
0	24.98	23.48
Si	12.50	12.23

Table S2. EDS-analysed element contents of C, N, O, S in Psi and dual-fluorescence P-E-Si-CDs.

Figure S3. (a) XPS spectra, High-resolution XPS (b) C1s, (c) N1s, (d) Si2p and (f) O1s spectra of Psi and dual-fluorescence P-E-Si-CDs.

Figure S4. UV-Vis absorption spectra of Psi and dual-fluorescence P-E-Si-CDs.

Figure S5. The fluorescence photographs under the

varying treated temperature.

Figure S6. Photographs of P-E-Si-CDs in saturated NaOH solution, HF solution, water and concentrated HCl (37%) under UV irradiation or not.

Figure 7. The mechanism illustration of P-E-Si-CDs with the function of UV absorption (Left), and the infrared images (right) of Psi and dual-fluorescence P-E-Si-CDs.

Figure S8. Luminous efficiency of warm WLED based on UV-emissive LED chip (λ_{peak} : 395 nm) and dual-fluorescence P-E-Si-CDs along with varying electric power.