Constructing tetrahedral CoO_4 vacancies for activating the high oxygen evolution activity of $Co_{3-x}O_{4-\delta}$ porous nanosheet arrays

Shenghua Ye, Yu Zhang, Wei Xiong, Tingting Xu, Peng Liao, Pingyu Zhang, Xiangzhong Ren, Chuanxin He, Lirong Zheng, Xiaoping Ouyang, Qianling Zhang,* and Jianhong Liu,*

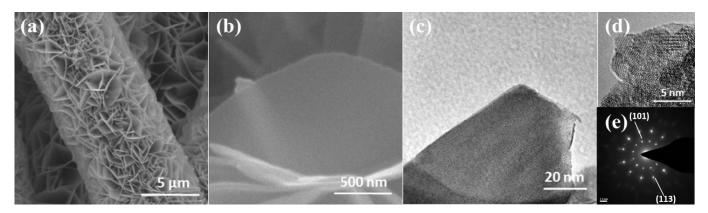


Figure S1 (a–b) SEM, (c) TEM, (d) HRTEM images and (e) SAED pattern of α-Co(OH)₂ NAs/CFC.

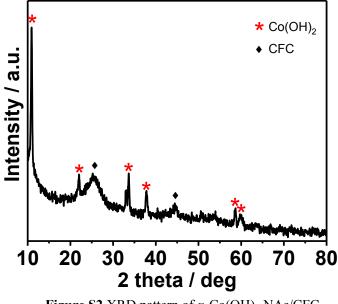


Figure S2 XRD pattern of α -Co(OH)₂ NAs/CFC.

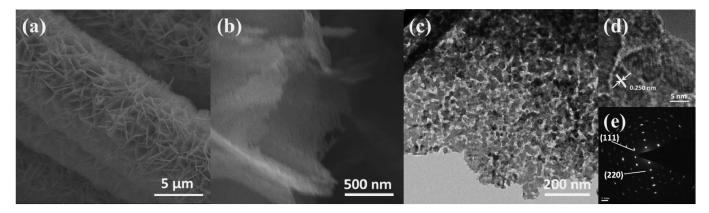


Figure S3 (a-b) SEM, (c) TEM, and (d) HRTEM images, and (e) SAED pattern of CoO PNAs/CFC.

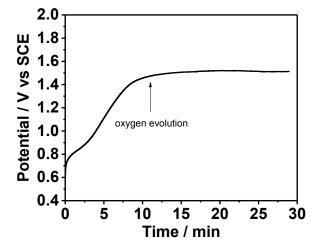


Figure S4 E-t curve during in situ anodic oxidation of CoO PNAs/CFC in a 0.01 M (NH₄)₂SO₄ solution.

As shown in Figure S4, the applied potential was lower and increased over time in the first 10 min of the in situ oxidation process. At this stage, CoO gradually transformed to $Co_{3-x}O_{4-\delta}$, and the color of the sample changed from brown to black. After ~10 min, the potential remained stable, and some continuous bubbles appeared, indicating that CoO was thoroughly transformed to $Co_{3-x}O_{4-\delta}$ and the H₂O in the (NH₄)₂SO₄ solution began to decompose to O₂ at the anode. To guarantee thoroughly transformed of the sample, we performed the in situ oxidation process for 20 min.

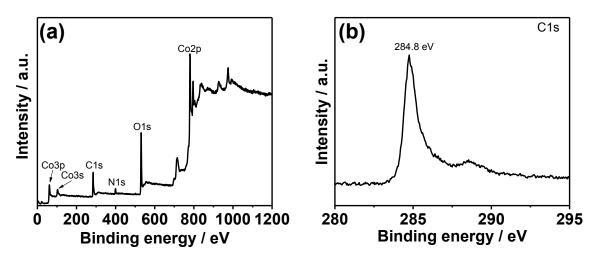
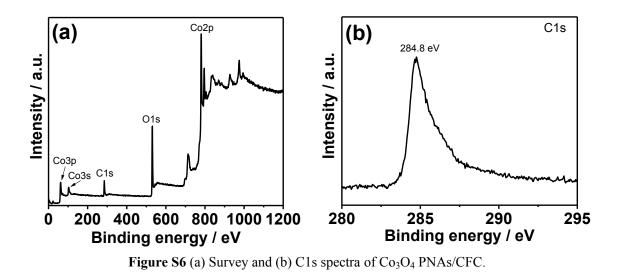



Figure S5 (a) Survey and (b) C1s spectra of $Co_{3-x}O_{4-\delta}$ PNAs/CFC.

The survey spectra of $Co_{3-x}O_{4-\delta}$ PNAs/CFC and Co_3O_4 PNAs/CFC, shown in Figures S5–6, suggest that only C, O, and Co can be detected, along with trace amounts of N that originate from absorbed NH_4^+ on the surface.

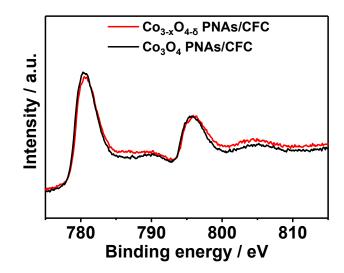


Figure S7 Co2p spectra of Co_{3-x}O_{4-δ} PNAs/CFC and Co₃O₄ PNAs/CFC.

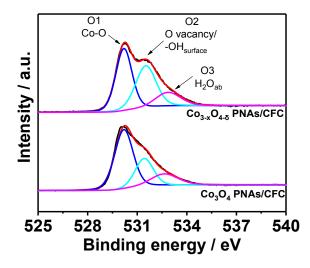


Figure S8 O1s spectra of $Co_{3-x}O_{4-\delta}$ PNAs/CFC and Co_3O_4 PNAs/CFC.

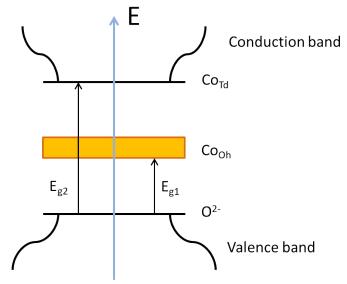


Figure S9 Electronic band structure of Co₃O₄.^[1]

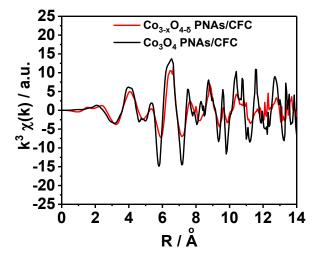


Figure S10 EXAFS oscillation of Co K-edge of $Co_{3-x}O_{4-\delta}$ PNAs/CFC and Co_3O_4 PNAs/CFC.

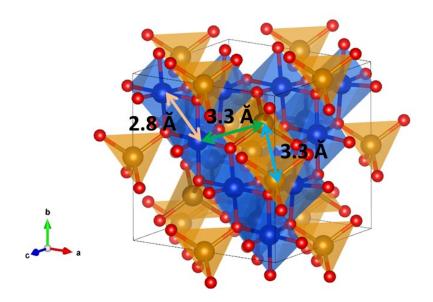


Figure S11 Crystalline structure of Co₃O₄.

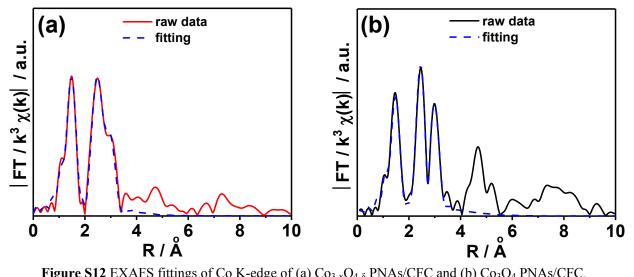


Figure S12 EXAFS fittings of Co K-edge of (a) Co_{3-x}O_{4-δ} PNAs/CFC and (b) Co₃O₄ PNAs/CFC.

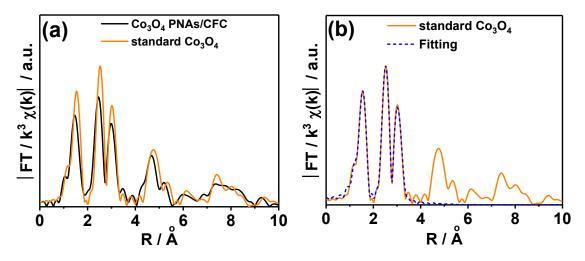
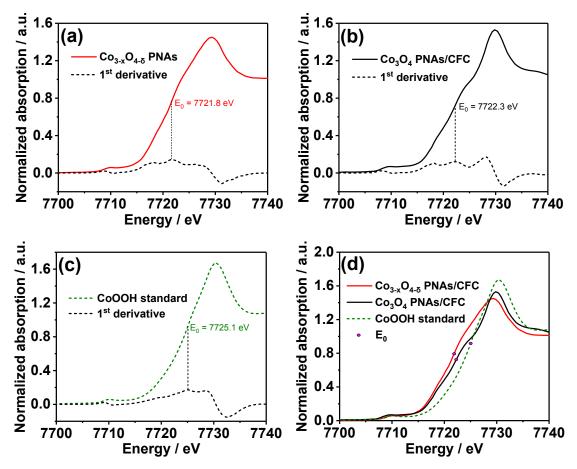


Figure S13 (a) FT-EXAFS of Co K-edge for $Co_{3-x}O_{4-\delta}$ PNAs/CFC and standard Co_3O_4 , and (b) EXAFS fitting of standard Co_3O_4 .


Table S1. EXAFS fitting parameters of the Co K-edge for various samples.

Sample	Shell	CN ^a	R (Å) ^b	$\sigma^2 (\text{\AA}^2 \cdot 10^3)^{c}$	$\Delta E_0 (\mathrm{eV})^{d}$	R factor (%)
Co _{3-x} O _{4-δ}	Co-O	3.9	1.92	4.5	-3.5	1.0
PNAs/CFC	Co _{Oh} -Co _{Oh}	3.8	2.86	7.8	-4.4	
	Co-Co _{Td}	6.6	3.32	9.3	-8.6	
Co ₃ O ₄	Co-O	5.3	1.92	4.0	-5.6	0.8
PNAs/CFC	Co _{Oh} -Co _{Oh}	4.0	2.85	3.9	-6.6	
	Co-Co _{Td}	8.1	3.35	6.2	-8.9	
Standard	Co-O	5.3	1.92	3.3	5.3	0.3
C0 ₃ O ₄	Co _{Oh} -Co _{Oh}	4.0	2.85	3.4	2.9	
	Co-Co _{Td}	8.0	3.36	7.6		

^{*a*} CN: coordination numbers; ^{*b*} R: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. S_0^2 , 0.847, was obtained from the experimental EXAFS fit of the Co₃O₄ reference, by fixing CN as the known crystallographic value to all of the samples.

In normal Co_3O_4 , CN of Co-O in CoO_6 octahedrons and CoO_4 tetrahedrons is 6 and 4, respectively, the ratio of CoO_6 octahedrons and CoO_4 tetrahedrons in Co_3O_4 is 2:1, thus the average coordination number of Co-O should be calculated as 5.33, which complies with the result of Co_3O_4 PNAs/CFC in Table S1.

The CN of Co-O and Co-Co of Co₃O₄ PNAs/CFC are similar to that of standard Co₃O₄ with larger σ^2 value, indicating that Co₃O₄ PNAs/CFC presents typical chemical structure of Co₃O₄ with slightly higher disorder degree.

Figure S14 The white line of XANES and the first-order derivative of (a) $Co_{3-x}O_{4-\delta}$ PNAs/CFC, (b) Co_3O_4 PNAs/CFC and (c) CoOOH standard; (d) The white line of XANES and threshold energy (E₀) of $Co_{3-x}O_{4-\delta}$ PNAs/CFC, Co_3O_4 PNAs/CFC and CoOOH standard.

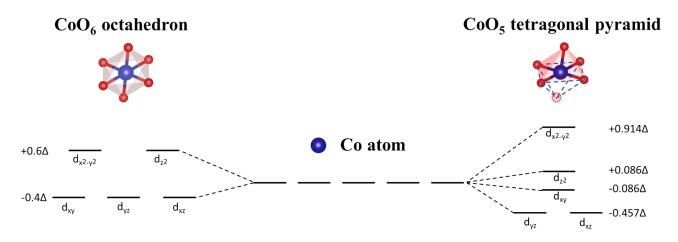
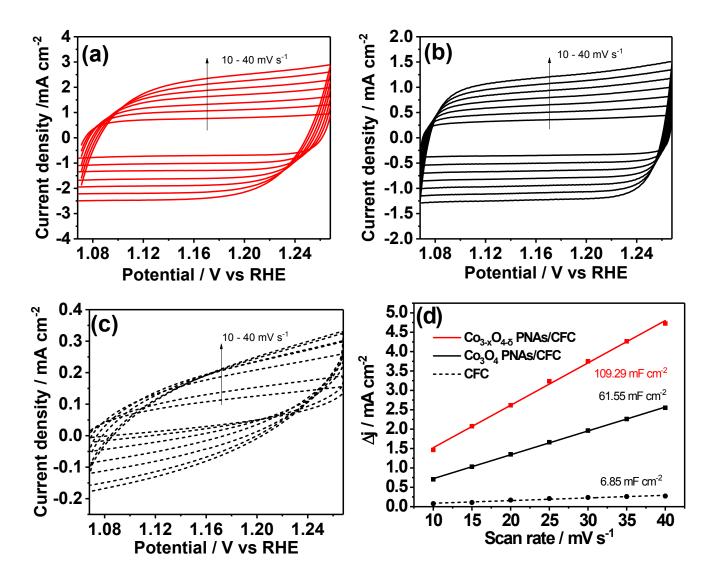



Figure S15 Splitting of 3d orbits of Co atom in octahedral and tetragonal pyramidic coordinative fields.

Electrocatalysts	η _{10 mA cm} ⁻² / mV	Tafel slope / mV dec ⁻¹	References	
Co _{3-x} O _{4-ð} PNAs/CFC	291	58.12	This work	
C0 ₃ O ₄ /C0O	302	68.6	Small 2019, 15, 1904903	
Co ₃ O ₄ @BP	400	63	ACS Appl. Mater. Interfaces 2019, 11, 1745	
Se/Ni-Co ₃ O ₄ -0.4/CP	290	69.9	ACS Sustainable Chem. Eng. 2019, 7, 1190	
Co ₃ O ₄ @Z67-N700@CeO ₂	350	80.7	J. Mater. Chem. A 2019, 7, 25853	
CoFe LDH/Co ₃ O ₄	290	77	ChemSusChem 2019, 12, 4442	
C03O4/NC-350	298	69	Small 2019, 15, 1904260	
Co3O4-x HoNPs@HPNCS-60	313	37.7	Angew. Chem. Int. Ed. 2019, 58, 13840	
Co ₃ O ₄ /Ag@NrGO	437	-	Chem. Eur. J. 2018, 24, 14816	
Co ₃ O ₄ /Co-Fe oxide DSNBs	297	61	Adv. Mater. 2018, 30, 1801211	
CoO _x -4h	306	67	Nano Energy 2018, 43, 110	
Co ₃ O ₄ nanosheets	330	57.8	ACS Appl. Mater. Interfaces 2017, 9, 1615	
V ₀ -Co ₃ O ₄	330	67.7	Energy Environ. Sci. 2017, 10, 2563	
C03O4@C0O SC	430	89	Nat. Commun. 2015, 6, 8106	
Au/Co ₃ O ₄	370	60	Adv. Mater. 2014, 26, 3950	
graphene-like holey Co ₃ O ₄ nanosheets	~464	68	Nano Energy 2016, 30, 267	
C0 ₃ O ₄ /N-PC	390	72	Nano Energy 2015, 12, 1	
Reduced Co ₃ O ₄	400	72	Adv. Energy Mater. 2014, 4, 1400696	
Co _{3-x} O ₄ -500	367	57.2	- ACS Catal. 2018, 8, 3803	
Co _{3-x} O ₄ -700	376	58.9	ACS Cattal. 2010, 0, 5005	
BCN-Co ₃ O ₄	394	-	RSC Adv. 2016, 6, 79448	
Co ₃ O ₄	368	59	J. Power Sources 2016, 310, 41	
RGO-C03O4	410	85	J. Mater. Chem. A 2016, 4, 13534	
10%Ni-Co ₃ O ₄	370	83	ACS Appl. Mater. Interfaces 2016, 8, 2080	
T-3D-Co ₃ O ₄	410	58	Chemelectrochem. 2017, 4, 2453	
Co ₃ O ₄ sheets	537	134	Nanoscale. 2018, 10, 10221	
C03O4/NCMT-800	350	-	J. Mater. Chem. A. 2017, 5, 20170	

Table S2. Electrocatalytic activities of various Co₃O₄ OER catalysts.

Figure S16 CV curves of (a) $Co_{3-x}O_{4-\delta}$ PNAs/CFC, (b) Co_3O_4 PNAs/CFC and (c) CFC; (d) current density variation plotted against the scan rate, fitted to a linear regression, enables the estimation of the double layer capacitance (C_{dl}).

The electrochemical active areas of Co_{3-x}O_{4-δ} PNAs/CFC and Co₃O₄ PNAs/CFC was determined by the formula:

$$R_f = \frac{C_{dl}}{60}$$

in which the C_{dl} of samples were deduced by the value of CFC, it was assumed that the C_{dl} of an ideal oxide's unit area is

 $60 \ \mu F \ cm^{-2}$. R_f is the roughness factor.

The electrochemical active area (ECSA) was calculated by the formula:

$$ECSA = R_f \times A$$

where A is the surface area of the electrode. ^[2]

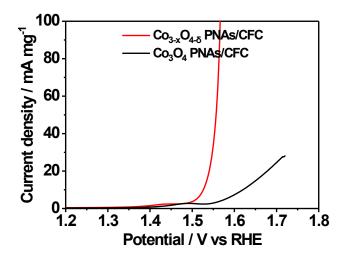


Figure S17 LSV curves of (a) Co_{3-x}O_{4-δ} PNAs/CFC and (b) Co₃O₄ PNAs/CFC, normalized to the mass of Co₃O₄.

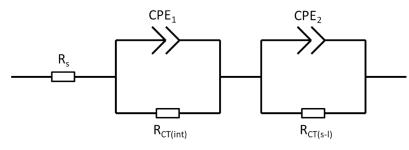


Figure S18 The simplified equivalent circuit model of EIS.

Table S3 The fitting factor of each circuit component of Co_{3-x}O_{4-δ} PNAs/CFC and Co₃O₄ PNAs/CFC.

sample	R _{CT(int)}	R _{CT(s-l)}	R _s	CPE ₁	CPE ₂
Co _{3-x} O _{4-ð} PNAs/CFC	0.5114	8.023	5.168	0.0005285	0.09841
Co ₃ O ₄ PNAs/CFC	8.679	25.45	6.221	0.0002209	0.04569

Figure S19 CVs for (a) $Co_{3-x}O_{4-\delta}$ PNAs/CFC and (b) Co_3O_4 PNAs/CFC under different scan rates from10 to 60 mV s⁻¹ in 1.0 M KOH; (c) linear relationship of the peak currents vs. scan rates for $Co_{3-x}O_{4-\delta}$ PNAs/CFC and Co_3O_4 PNAs/CFC at different fixed overpotentials.

The number of surface active sites associated with the redox Co species should be first calculated. The linear relationship between the oxidation peak current and the scan rate can be extracted from the electrochemical cyclic voltammetry scans. The slope of the line can be calculated based on the following equation:

$$Slope = \frac{n^2 F^2 m}{4RT}$$

in which *n* is the number of electrons transferred in the redox of Co^{3+}/Co^{4+} , *F* is the Faraday constant, *m* is the number of active sites (mol), *R* and *T* are the ideal gas constant and the absolute temperature, respectively.^[3]

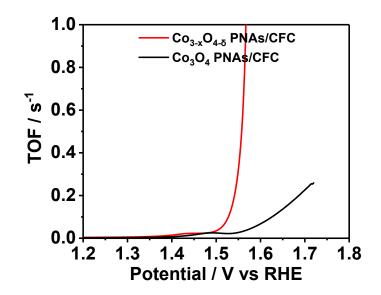


Figure S20 TOF curves of Co_{3-x}O_{4-δ} PNAs/CFC and Co₃O₄ PNAs/CFC.

The TOF value can be finally calculated using the formula

$$TOF = \frac{JA}{4Fm}$$

in which TOF is based on the number of redox-active sites, J is the current density at a certain overpotential, A is the area of the electrode, 4 indicates the moles of electrons consumed for evolving one mole of O₂ from H₂O, F is the Faraday constant, and m is the number of moles of the active sites.^[4]

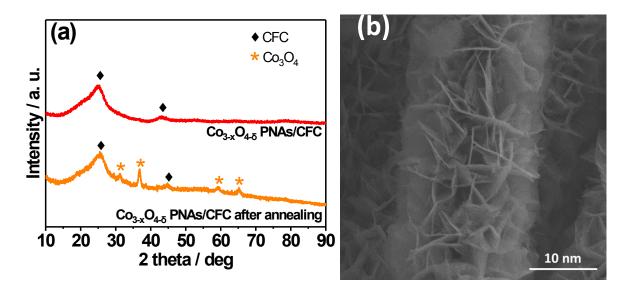


Figure S21 (a) XRD patterns of $Co_{3-x}O_{4-\delta}$ PNAs/CFC and $Co_{3-x}O_{4-\delta}$ PNAs/CFC after annealing; (b) SEM image of $Co_{3-x}O_{4-\delta}$ PNAs/CFC after annealing.

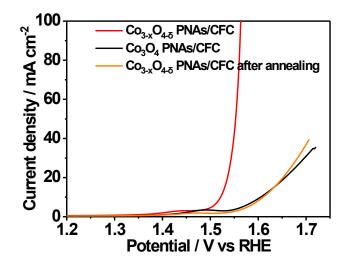


Figure S22 LSV curves of $Co_{3-x}O_{4-\delta}$ PNAs/CFC, Co_3O_4 PNAs/CFC and $Co_{3-x}O_{4-\delta}$ PNAs/CFC after annealing in 1 M KOH at 5 mV s⁻¹.

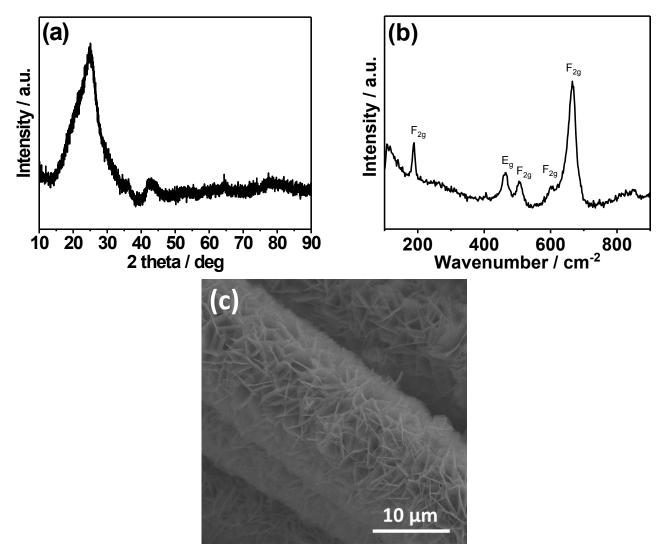


Figure S23 (a) XRD pattern, (b) Raman spectrum, and (c) SEM image of Co_{3-x}O_{4-δ} PNAs/CFC after the durability test.

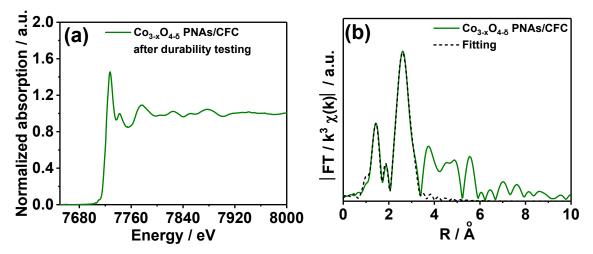


Figure S24 (a) XANES and (b) FT-EXAFS of Co_{3-x}O_{4-δ} PNAs/CFC after the durability test.

Sample	Shell	CN a	R (Å) ^b	σ^2 (Å ² ·10 ³) ^c	$\Delta E_0 \text{ (eV) } d$	R
C0 _{3-x} O _{4-δ}	Co-O	2.5	1.91	3.9	-8.4	
PNAs/CFC after	Co _{Oh} -Co _{Oh}	5.0	2.96	7.9		
durability test	Co-Co _{Td}	4.2	3.33	6.6	-6.7	

^{*a*} CN: coordination numbers; ^{*b*} R: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. S02, 0.847, was obtained from the experimental EXAFS fit of Co₃O₄ reference by fixing CN as the known crystallographic value and was fixed to all the samples.

The EXAFS fitting parameters of $Co_{3-x}O_{4-\delta}$ PNAs/CFC after durability test exhibited slightly change compared to those of $Co_{3-x}O_{4-\delta}$ PNAs/CFC shown in Table S4. The CN of Co-O and Co-Co_{Td} lowered after durability test, which means that long-term OER process at anodic potential may further induced the structural defects of Co tetrahedrons. Conversely, the CN of Co_{Oh} -Co_{Oh} slightly increased from 4.0 to 5.0, this phenomenon may be attributed to the measurement error of CN that is within 20% or little generation of Co(OH)₂ in the alkaline aqueous. XRD pattern and Raman spectrum shown in Figure S23 indicate that $Co_{3-x}O_{4-\delta}$ PNAs/CFC remained low crystalline Co_3O_4 phase without obvious impurity after durability test, thus we can conclude that microstructure didn't undergo large variation during the durability test.

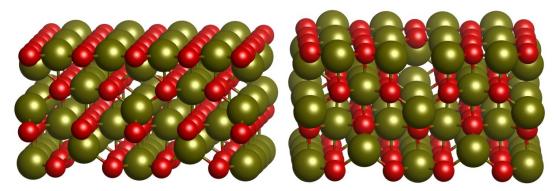
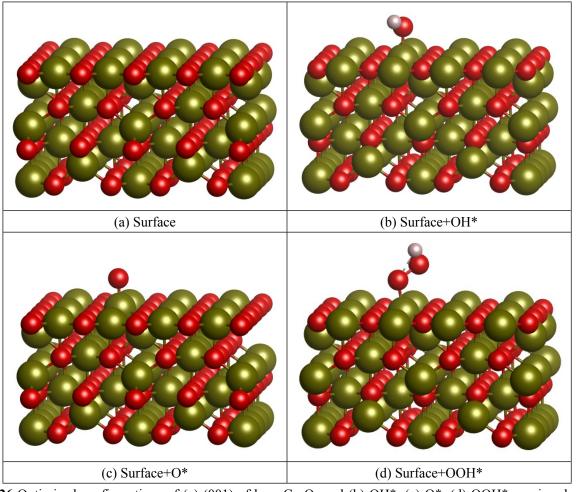



Figure S25 Calculation models of (a) perfect Co_3O_4 and (b) $Co_{3-x}O_{4-\delta}$ with tetrahedral CoO_4 vacancies.

Table S5 Molecular energy used for calculations.					
	H ₂ O	OH-	O_2	H ₂	
G (eV)	-14.32259985	-10.90832303	-10.0680924	-6.82855365	

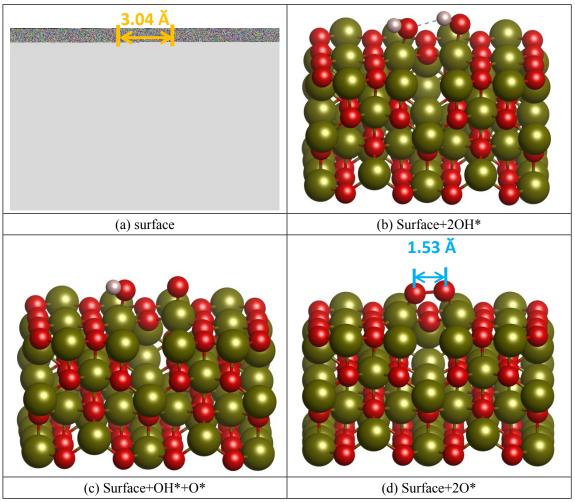

The energy of O₂ was calculated by $G(O_2) = G(2H_2O) - 2G(H_2) + 4.92 \text{ eV}$. The energy of OH⁻ was calculated by $G(OH^-) = G(H_2O)-G(H^+)$.

Figure S26 Optimized configurations of (a) (001) of bare Co_3O_4 and (b) OH*, (c) O*, (d) OOH* species absorbed on (001) of Co_3O_4 .

Table S6 Energy of each intermediate species and variation of the Gibbs free energy of each elementary step of Co₃O₄.

	Energy (eV)		
Surface	-714.61808813	ΔG1	0.644141185
Surface+OH	-724.88226997	$\Delta G2$	2.013164385
Surface+O	-719.45482876	$\Delta G3$	1.112610255
Surface+OOH	-729.25054153	$\Delta G4$	1.150084175

Figure S27 Optimized configurations of (a) (001) of bare $Co_{3-x}O_{4-\delta}$ and (b) 2OH*, (c) OH* + O*, and (d) 2O* species absorbed on the oxygen vacancies on (001) of $Co_{3-x}O_{4-\delta}$.

Table S7 Energy of each intermediate species and variation of the Gibbs free energy of each elementary steps of $Co_{3-x}O_{4-\delta}$.

	Energy (eV)		
Surface	-691.98087440	ΔG1	0.51455471
Surface+2OH	-713.28296574	$\Delta G2$	1.911768845
Surface+OH+O	-707.95692007	$\Delta G3$	1.425043005
Surface+2O	-703.11760024	$\Delta G4$	1.06863344

References

- [1] S. Meher, G. Rao. J. Phys. Chem. C 2011, 115, 25543-25556.
- [2] R. Zhang, Y. Zhang, L. Pan, G. Shen, N. Mahmood, Y. Ma, Y. Shi, W. Jia, L. Wang, X. Zhang, W. Xu, J. Zou. ACS Catal. 2018, 8, 3803-3811.
- [3] D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu, X. Guo, Z. Liu, A. Asiri, Q. Wei, X. Sun. Adv. Mater. 2018, 30, 1705366.